Ming Hsieh Department of Electrical Engineering

USCViterbi

School of Engineering

Real-time decoding of mood from human large-scale ECoG activity

*Omid G. Sani¹, Yuxiao Yang¹, Edward F. Chang², and Maryam M. Shanechi¹

Dept. of Electrical Eng., Univ. of Southern California¹, Dept. of Neurological Surgery, Univ. of California, San Francisco²

I. Motivation

- Decoding mood from neural activity:
 - **C**an enable personalized treatment of mood disorders such as depression and anxiety
 - Can help us understand the neural processes underlying mood regulation
- Decoding an individual's mood from neural activity has not been demonstrated.

Prior studies:

- Have used fMRI which would not be practical for closed-loop stimulation therapy
- Have only found brain regions related to mood

II. Methods

1. Datasets

- Multi-day intracranial recordings from 6 epilepsy patients (Chang Lab at UCSF).
- Self-reports of mood via Immediate Mood Scaler (IMS) questionnaire

2. Modelling framework

across human populations, but have not decoded an individual's mood over time

Our goal:

Identify mood-predictive networks in individuals

Decode mood variations over time in individuals

Repeat same modeling for randomly generated mood to assess significance

III. Results

1. Mood could be decoded in all individuals

2. Identified mood-predictive networks were largely in the limbic system

IV. Conclusions

- Demonstrated for the first time that mood variations can be decoded from human intracranial neural recordings
- Identified mood-predictive neural features were distributed largely in the limbic system
- Spectro-spatial features in identified networks were tuned to mood variations
- These results demonstrate the feasibility of real-time, chronic mood decoding

omid.ghasemsani@usc.edu

Ming Hsieh Institute

Ming Hsieh Department of Electrical Engineering

Neural Systems Engineering & Information Processing Lab (NSEIP Lab)

JCSF

University of California

