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B Decoding mood from neural activity: 1. Datasets

O Can enable personalized treatment of mood B Multi-day intracranial recordings from 6 epilepsy patients (Chang Lab at UCSF).
disorders such as depression and anxiety B Self-reports of mood via Immediate Mood Scaler (IMS) questionnaire

O Can help us understand the neural processes 2. Modellin g framework
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Prior studies: neural predictors from neural activity

O Have used fMRI which would not be practical for B Evaluate with leave-one-out cross-validation

closed-loop stimulation therapy a = —_— b Fitted S,
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Error measure:

O Identify mood-predictive networks in individuals

0 Decode mood variations over time in individuals B Repeat same modeling for randomly generated mood to assess significance

1. Mood could be decoded 2. ldentified mood-predictive networks
in all individuals were largely in the limbic system
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B Demonstrated for the first time that mood variations can be decoded from human Neural Systems Engineering & [F7Z[E
intracranial neural recordings Information Processing Lab E%
entified mood-predictive neural features were distributed largely in the limbic system (NSEIP Lab) [=]
pectro-spatial features in identified networks were tuned to mood variations | |q Mll’lg HSleh Instltute
nese results demonstrate the feasibility of real-time, chronic mood decoding
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