DNA data storage is an attractive option for digital datastorage because of its extreme density, durability and eternal relevance. This is especially attractive when contrasted with the exponential growth in world-wide digital data production. In this talk, we will present our efforts in building an end-to-end system, from the computational component of encoding and decoding to the molecular biology component of random access, sequencing and fluidics automation. We will also discuss some early efforts in building a hybrid electronic/molecular computer system that has the potential to offer more than just data storage.
Luis Ceze is a Professor of Computer Science and Engineering at the University of Washington. His research focuses on the intersection between computer architecture, programming languages and biology. His current focus is on approximate computing and DNA-based data storage. He has co-authored over 100 papers in these areas, and had several papers selected as IEEE Micro Top Picks and CACM Research Highlights. His research has been featured prominently in the media including NewYork Times, Popular Science, MIT Technology Review, Wall Street Journal, among others. He is a recipient of an NSF CAREER Award, a Sloan Research Fellowship, a Microsoft Research Faculty Fellowship,the IEEE TCCA Young Computer Architect Award and UIUC Distinguished Alumni Award. He is a member of the DARPA ISAT and MEC study groups, and consults for Microsoft.