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Andrew Viterbi’s Fabulous Formula, IEEE Spectrum, 2010

“A couple of professors at Stanford were being quoted in the
press saying that CDMA violated the laws of physics.”
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About this lecture

∙ Common information between correlated information sources

∙ The lecture is tutorial in nature with many examples

∙ No proofs, but a potentially interesting framework and new result

∙ Outline:

é Brief introduction to information theory

é Information sources and measuring information

é Brief introduction to network information theory

é Correlated information sources and measuring common information

∙ Some of the basic models, ideas, and results of information theory
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Information theory

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning . . . . These semantic
aspects of communication are irrelevant to the engineering problem.

– A Mathematical Theory of Communication, Shannon (1948)
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Information theory

∙ Mathematical models for the source and the channel

∙ Measures of information (entropy and mutual information)

∙ Limits on compression and communication

∙ Bits as a universal interface between the source and the channel
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Information theory

∙ Coding schemes that achieve the Shannon limits

é Viterbi decoding algorithm (Viterbi 1967)

é Lempel–Ziv compression algorithm (Ziv–Lempel 1977, 1978)

é Trellis coded modulation (Ungerboeck 1982)

é Turbo codes (Berrou–Glavieux 1996)

é LDPC codes (Gallager 1963, Richardson–Urbanke 2008)

é Polar codes (Arıkan 2009)
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Information source

An information source which produces a message or sequence of mes-
sages to be communicated to the receiving terminal. The message may
be of various types: e.g. (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f (t) as in radio or
telephony; . . .

– A Mathematical Theory of Communication, Shannon (1948)
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Modeling the information source

We can think of a discrete source as generating the message, symbol
by symbol. . . . A physical system, or a mathematical model of a sys-
tem which produces such a sequence of symbols governed by a set of
probabilities, is known as a stochastic process.
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Measuring information of the source

Can we define a quantity which will measure, in some sense, how much
information is “produced” by such a process, or better, at what rate infor-
mation is produced?
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Measuring information of the source

Suppose we have a set of possible events whose probabilities of occurrence
are p1, p2, . . . , pn. . . . If there is such a measure, say H(p1 , p2 , . . . , pn), it
is reasonable to require of it the following properties:
1. H should be continuous in the pi .
2. If all the pi are equal, H should be monotonic increasing function of n.
3. If a choice be broken down into two successive choices, the original H
should be the weighted sum of the individual values of H .
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Measuring information of the source

Theorem 2: The only H satisfying the three above assumptions is of the
form:

H = −K nH
i=1

pi log pi
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Measuring information of the source

Theorem 2: The only H satisfying the three above assumptions is of the
form:

H = −K nH
i=1

pi log pi

This theorem, and the assumptions required for its proof, are in no way
necessary for the present theory. . . . The real justification of these defini-
tions, however, will reside in their implications.

– A Mathematical Theory of Communication, Shannon (1948)
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Setups for measuring information

∙ Entropy arises naturally as a measure of information in many settings
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é Source simulation

∙ Assume a discrete memoryless source (X , p(x)) (DMS X)

X generates independent identically distributed (i.i.d.) X1 , X2 , . . . ∼ p(x)
∙ Example: Bernoulli source with parameter p ∈ [0, 1] (Bern(p) source)

X = {0, 1}, pX(1) = p; generates i.i.d X1 , X2 , . . . ∼ Bern(p)
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Setups for measuring information

∙ Entropy arises naturally as a measure of information in many settings

∙ Will describe three of them

é Zero-error compression

é Randomness extraction

é Source simulation

∙ Assume a discrete memoryless source (X , p(x)) (DMS X)

X generates independent identically distributed (i.i.d.) X1 , X2 , . . . ∼ p(x)
∙ Example: Bernoulli source with parameter p ∈ [0, 1] (Bern(p) source)

X = {0, 1}, pX(1) = p; generates i.i.d X1 , X2 , . . . ∼ Bern(p)
∙ Example: “DNA source,” X = {A,G,C,T}; p(x) = [p1 p2 p3 p4]
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Zero-error compression

Xn c(Xn) ∈ {0, 1}∗ Xn

Encoder DecoderDMS X

∙ Xn = (X1 , X2 , . . . , Xn) i.i.d. ∼ p(x)∙ Variable-length prefix-free code: c(xn) ∈ {0, 1}∗ = {0, 1, 00, 01, 10, 11, . . .}
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Zero-error compression

Xn c(Xn) ∈ {0, 1}∗ Xn

Encoder DecoderDMS X

∙ Xn = (X1 , X2 , . . . , Xn) i.i.d. ∼ p(x)∙ Variable-length prefix-free code: c(xn) ∈ {0, 1}∗ = {0, 1, 00, 01, 10, 11, . . .}∙ Example: X = {A,G,C,T}, p(x) = [5/8 1/4 1/16 1/16], n = 1

0

0

0

1

1

1

0 ← A

10 ← G

110 ← C

111 ← T
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Zero-error compression

Xn c(Xn) ∈ {0, 1}∗ Xn

Encoder DecoderDMS X

∙ Xn = (X1 , X2 , . . . , Xn) i.i.d. ∼ p(x)∙ Variable-length prefix-free code: c(xn) ∈ {0, 1}∗ = {0, 1, 00, 01, 10, 11, . . .}∙ Example: X = {A,G,C,T}, p(x) = [5/8 1/4 1/16 1/16], n = 1

0

0

0

1

1

1

0 ← A

10 ← G

110 ← C

111 ← T∙ Let Ln be the codeword length and Rn = (1/n) E(Ln) bits/symbol

E(L1) = 1 ⋅ 5
8
+ 2 ⋅ 1

4
+ 3 ⋅ 1

8
= 1.5 bits
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Zero-error compression

Xn c(Xn) ∈ {0, 1}∗ Xn

Encoder DecoderDMS X
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Zero-error compression

Xn c(Xn) ∈ {0, 1}∗ Xn

Encoder DecoderDMS X

∙ Xn = (X1 , X2 , . . . , Xn) i.i.d. ∼ p(x)∙ Variable-length prefix-free code: c(xn) ∈ {0, 1}∗ = {0, 1, 00, 01, 10, 11, . . .}∙ Let Ln be the codeword length and Rn = (1/n) E(Ln) bits/symbol∙ Measure the information rate of X by: R∗ = infn mincodes Rn

Information rate is the entropy (Shannon 1948)

R∗ = H(X) = H
x

−p(x) log p(x) bits/symbol
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Entropy examples

∙ X ∼ Bern(p): H(X) = H(p) = −p log p − (1 − p) log(1 − p)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
H
(X)

p
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Entropy examples

∙ X ∼ Bern(p): H(X) = H(p) = −p log p − (1 − p) log(1 − p)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
H
(X)

p∙ For DNA source: H(X) = 1.424 bits (E(L1) = 1.5)
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Randomness extraction

. . . , X2 , X1 Bn

Extractor

∙ X is a DMS; Bn is an i.i.d. ∼ Bern(1/2) sequence∙ Let Ln be length of X sequence and Rn = n/ E(Ln) bits/symbol
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Randomness extraction

. . . , X2 , X1 Bn

Extractor

∙ X is a DMS; Bn is an i.i.d. ∼ Bern(1/2) sequence∙ Let Ln be length of X sequence and Rn = n/ E(Ln) bits/symbol∙ Example: Let X be Bern(1/3) source, n = 1 (B1 ∼ Bern(1/2))

0

1

X1 = 0

X2 = 0

X1 = 1

X2 = 1

01 → 0

10 → 1

0001 → 0

0010 → 1

1101 → 0

1110 → 1
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Randomness extraction

. . . , X2 , X1 Bn

Extractor

∙ X is a DMS; Bn is an i.i.d. ∼ Bern(1/2) sequence∙ Let Ln be length of X sequence and Rn = n/ E(Ln) bits/symbol∙ Example: Let X be Bern(1/3) source, n = 1 (B1 ∼ Bern(1/2))

0

1

X1 = 0

X2 = 0

X1 = 1

X2 = 1

01 → 0

10 → 1

0001 → 0

0010 → 1

1101 → 0

1110 → 1

E(L1) = 4

9
⋅ 2 + 5

9
⋅ (2 + E(L1)) ⇒ R1 = 1/E(L1) = 2

9
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Randomness extraction

. . . , X2 , X1 Bn

Extractor

∙ X is a DMS; Bn is an i.i.d. ∼ Bern(1/2) sequence∙ Let Ln be length of X sequence and Rn = n/ E(Ln) bits/symbol∙ The information rate of X: R∗ = supn maxextractor Rn
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Randomness extraction

. . . , X2 , X1 Bn

Extractor

∙ X is a DMS; Bn is an i.i.d. ∼ Bern(1/2) sequence∙ Let Ln be length of X sequence and Rn = n/ E(Ln) bits/symbol∙ The information rate of X: R∗ = supn maxextractor Rn

Information rate is the entropy (Elias 1972)

R∗ = H(X) bits/symbol
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Source simulation

. . . , B2 , B1 Xn

Generator

∙ B is a Bern(1/2) source; Xn i.i.d. ∼ p(x) sequence∙ Let Ln be length of the B sequence and Rn = (1/n) E(Ln) bits/symbol
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Source simulation

. . . , B2 , B1 Xn

Generator

∙ B is a Bern(1/2) source; Xn i.i.d. ∼ p(x) sequence∙ Let Ln be length of the B sequence and Rn = (1/n) E(Ln) bits/symbol∙ Example: Let X be Bern(1/3) source, n = 1

B1 = 0

B1 = 1

B2 = 0

B2 = 1

0 → 0

10 → 1

110 → 0

1110 → 1

P{X1 = 1} = 1

4
+ 1

42
+ 1

43
+ ⋅ ⋅ ⋅ = 1

3

E(L1) = 1

2
⋅ 1 + 1

4
⋅ 2 + 1

4
⋅ (2 + E(L1)) ⇒ E(L1) = 2
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Source simulation

. . . , B2 , B1 Xn

Generator

∙ B is a Bern(1/2) source; Xn i.i.d. ∼ p(x) sequence∙ Let Ln be length of the B sequence and Rn = (1/n) E(Ln) bits/symbol∙ The information rate of X: R∗ = infn mingenerator Rn

El Gamal (Stanford University) Measuring information Viterbi Lecture 13 / 36



Source simulation

. . . , B2 , B1 Xn

Generator

∙ B is a Bern(1/2) source; Xn i.i.d. ∼ p(x) sequence∙ Let Ln be length of the B sequence and Rn = (1/n) E(Ln) bits/symbol∙ The information rate of X: R∗ = infn mingenerator Rn

Information rate is the entropy (Knuth–Yao 1976)

R∗ = H(X) bits/symbol
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Summary

∙ Entropy arises naturally as a measure of information rate:

é The minimum average description length in bits/symbol of X

é The maximum number of bits/symbol that can be extracted from X

é The minimum number of bits/symbol needed to simulate X
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Correlated sources

∙ Sensor network

Los Angeles

San Diego

San Francisco
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Correlated sources

∙ Wireless multipath

X1

X2

X3
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Correlated sources

∙ Distributed secret key generation

X Y

Key Key

El Gamal (Stanford University) Correlated sources Viterbi Lecture 15 / 36



Correlated sources

∙ Distributed simulation

W

X1

X2

X3

X4
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Correlated sources

How to measure common information between correlated sources
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Network information theory

Communication network
Source

Node

∙ Establishes limits on communication/distributed processing in networks
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Network information theory

Communication network
Source

Node

∙ Establishes limits on communication/distributed processing in networks∙ First paper (Shannon 1961): “Two-way communication channels”∙ Significant progress in 1970s (Cover 1972, Slepian–Wolf 1973)∙ Internet and wireless communication revived interest (EG–Kim 2011)
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Measuring common information

∙ Setups for measuring common information:

é Distributed compression

é Distributed key generation

é Distributed simulation

El Gamal (Stanford University) Measuring common information Viterbi Lecture 17 / 36



Measuring common information

∙ Setups for measuring common information:

é Distributed compression

é Distributed key generation

é Distributed simulation∙ Assume a 2-discrete memoryless source (X × Y , p(x, y)) (2-DMS (X , Y ))
(X ,Y ) generates i.i.d. sequence (X1 ,Y1), (X2 ,Y2), . . . ∼ p(x, y)
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Measuring common information

∙ Setups for measuring common information:

é Distributed compression

é Distributed key generation

é Distributed simulation∙ Assume a 2-discrete memoryless source (X × Y , p(x, y)) (2-DMS (X , Y ))
(X ,Y ) generates i.i.d. sequence (X1 ,Y1), (X2 ,Y2), . . . ∼ p(x, y)∙ Examples:

0

1

0

1
1 − p

1 − p

X ∼ Bern(1/2) Y

Doubly symmetric binary source

DSBS
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Measuring common information

∙ Setups for measuring common information:

é Distributed compression

é Distributed key generation

é Distributed simulation∙ Assume a 2-discrete memoryless source (X × Y , p(x, y)) (2-DMS (X , Y ))
(X ,Y ) generates i.i.d. sequence (X1 ,Y1), (X2 ,Y2), . . . ∼ p(x, y)∙ Examples:

0

1

0

1
1 − p

1 − p

X ∼ Bern(1/2) Y

0

1

0

1

e

1 − p

1 − p

X ∼ Bern(1/2) Y

Doubly symmetric binary source Symmetric binary erasure source

DSBS SBES
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Let (X ,Y ) be a 2-DMS; prefix-free codes c1(xn), c2(yn)∙ Let L jn be length of c j and R jn = (1/n) E(L jn), j = 1, 2
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Let (X ,Y ) be a 2-DMS; prefix-free codes c1(xn), c2(yn)∙ Let L jn be length of c j and R jn = (1/n) E(L jn), j = 1, 2∙ Measure the common information rate between X and Y by

R∗
C = H(X) + H(Y ) − inf

n
min
codes

(R1n + R2n) bits/symbol-pair
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Let (X ,Y ) be a 2-DMS; prefix-free codes c1(xn), c2(yn)∙ Let L jn be length of c j and R jn = (1/n) E(L jn), j = 1, 2∙ Measure the common information rate between X and Y by

R∗
C = H(X) + H(Y ) − inf

n
min
codes

(R1n + R2n) bits/symbol-pair

∙ Example: X = (U ,W), Y = (V ,W), where U ,V ,W are independent:

R∗
C = (H(U) + H(W)) + (H(V ) + H(W)) − (H(U) + H(V ) + H(W))
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Measure the common information rate between X and Y by

R∗
C = H(X) + H(Y ) − inf

n
min
codes

(R1n + R2n) bits/symbol-pair

∙ Example: SBES (H(X) = 1, H(Y ) = (1 − p) + H(p))

0

1

0

1

e

1 − p

1 − p

X ∼ Bern(1/2) Y
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Example: SBES (H(X) = 1, H(Y ) = (1 − p) + H(p))
Can show that R∗

C = 1 − p:

é Encoder 1 sends Xn: R1n = 1 bit/symbol

é Encoder 2 sends erasure location sequence: infn R2n = H(p) bit/symbol

⇒ R∗
C ≤ H(X) +H(Y) − (R1n + infn R2n) = 1 − p
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Example: For SBES, R∗
C = 1 − p∙ Example: For DSBS, R∗
C = 0 for 0 < p < 1

0

1

0

1
1 − p

1 − p

X ∼ Bern(1/2) Y
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Distributed zero-error compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
Xn ,Yn

c1(Xn)
c2(Yn)

∙ Example: For SBES, R∗
C = 1 − p∙ Example: For DSBS, R∗
C = 0 for 0 < p < 1∙ No computable expression for R∗

C is known (Körner–Orlitsky 1998)
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Distributed secret key generation

Xn Yn

Kn Kn

Alice Bob

∙ (X ,Y ) is a 2-DMS∙ Define key rate as Rn = (1/n)H(Kn) bits/symbol-pair
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Distributed secret key generation

Xn Yn

Kn Kn

Alice Bob

∙ (X ,Y ) is a 2-DMS∙ Define key rate as Rn = (1/n)H(Kn) bits/symbol-pair∙ The common information rate: R∗ = supn maxextractors Rn
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Distributed secret key generation

Xn Yn

Kn Kn

Alice Bob

∙ (X ,Y ) is a 2-DMS∙ Define key rate as Rn = (1/n)H(Kn) bits/symbol-pair∙ The common information rate: R∗ = supn maxextractors Rn∙ Example: X = (U ,W), Y = (V ,W), where U ,V ,W are independent

Then again R∗ = H(W)
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Distributed secret key generation

Xn Yn

Kn Kn

Alice Bob

∙ Example: Consider (X , Y ) with pmf:

X
Y

W = 1 W = 2

W = 1

W = 2 0

0

0

00

0

0

0

1

1

2

2

3

3

4

4

0.10.1

0.10.1

0.1

0.1

0.2

0.2
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Distributed secret key generation

Xn Yn

Kn Kn

Alice Bob

∙ Example: Consider (X , Y ) with pmf:

X
Y

W = 1 W = 2

W = 1

W = 2 0

0

0

00

0

0

0

1

1

2

2

3

3

4

4

0.10.1

0.10.1

0.1

0.1

0.2

0.2

∙ Alice and Bob can agree on i.i.d. key Wn ⇒ Rn = H(W)
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Distributed secret key generation

Xn Yn

Kn Kn

Alice Bob

∙ Example: Consider (X , Y ) with pmf:

X
Y

W = 1 W = 2

W = 1

W = 2 0

0

0

00

0

0

0

1

1

2

2

3

3

4

4

0.10.1

0.10.1

0.1

0.1

0.2

0.2

∙ Alice and Bob can agree on i.i.d. key Wn ⇒ Rn = H(W)∙ Turns out: R∗ = H(W) = 0.881 bits/symbol-pair
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Gács–Körner (1973), Witsenhausen (1975) common information

∙ Arrange p(x, y) in block diagonal form with largest # of blocks:

X
Y

W = 1

W = 2

W = k

0

00

0

0

0

∙ W is called the common part between X and Y

It is the highest entropy r.v. that X and Y can agree on

K(X ; Y ) = H(W) is called GKW common information
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Gács–Körner (1973), Witsenhausen (1975) common information

∙ Arrange p(x, y) in block diagonal form with largest # of blocks:

X
Y

W = 1

W = 2

W = k

0

00

0

0

0

∙ W is called the common part between X and Y∙ The common part between Xn and Yn is Wn
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Gács–Körner (1973), Witsenhausen (1975) common information

∙ Arrange p(x, y) in block diagonal form with largest # of blocks:

X
Y

W = 1

W = 2

W = k

0

00

0

0

0

Common information rate is the GKW common information

R∗ = K(X ; Y ) = H(W)
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Distributed simulation

Wn

( Alice

Bob

Xn

Yn

∙ Wn is a common information random variable∙ Wish to generate (Xn ,Yn) i.i.d. ∼ p(x, y)
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Distributed simulation

Wn

( Alice

Bob

Xn

Yn

∙ Wn is a common information random variable∙ Wish to generate (Xn ,Yn) i.i.d. ∼ p(x, y)∙ Define the distributed simulation rate Rn = (1/n)H(Wn)∙ The common information rate: R∗
S = infn minWn , generators

Rn
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Distributed simulation

Wn

( Alice

Bob

Xn

Yn

∙ Wn is a common information random variable∙ Wish to generate (Xn ,Yn) i.i.d. ∼ p(x, y)∙ Define the distributed simulation rate Rn = (1/n)H(Wn)∙ The common information rate: R∗
S = infn minWn , generators

Rn∙ Example: X = (U ,W), Y = (V ,W), where U ,V ,W are independent

Then again R∗
S = H(W) (set Wn =Wn)
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Distributed simulation

Wn

( Alice

Bob

Xn

Yn

∙ Wn is a common information random variable∙ Wish to generate (Xn ,Yn) i.i.d. ∼ p(x, y)∙ Define the distributed simulation rate Rn = (1/n)H(Wn)∙ The common information rate: R∗
S = infn minWn , generators

Rn∙ No computable expression for R∗
S is known
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Distributed simulation

∙ Example: SBES (Kumar–Li–EG, ISIT 2014)

0

1

0

1

e

1 − p

1 − p

X ∼ Bern(1/2) Y
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Distributed simulation

∙ Example: SBES (Kumar–Li–EG, ISIT 2014)

R∗
S = ®1 if p ≤ 1/2

H(p) if p > 1/2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
∗ S

p
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Summary

∙ Entropy is a “universal” measure of information
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Summary

∙ Entropy is a “universal” measure of information

∙ For X = (U ,W), Y = (V ,W), where U ,V ,W are independent

é Common information is measured by H(W)
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Summary

∙ Entropy is a “universal” measure of information

∙ In general, common information has several measures:

é For zero-error distributed compression: R∗
C (no computable expression)

é For distributed key generation: K(X ;Y) (GKW common information)

é For distributed simulation: R∗
S (no computable expression)
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Summary

∙ Entropy is a “universal” measure of information

∙ In general, common information has several measures:

é For zero-error distributed compression: R∗
C (no computable expression)

é For distributed key generation: K(X ;Y) (GKW common information)

é For distributed simulation: R∗
S (no computable expression)

∙ We can say more by considering relaxed versions of these setups

é Distributed lossless compression

é Distributed approximate simulation

∙ Common information for approximate key generation same as for exact
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Lossless compression

Xn Mn ∈ [1 : 2nR] X̂n

Encoder Decoder

∙ Let X be a DMS∙ Use fixed-length (block) codes (Mn ∈ {1, . . . , 2nR} is an nR-bit sequence)∙ Probability of error: P(n)
e = P{X̂n ̸= Xn}
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Lossless compression

Xn Mn ∈ [1 : 2nR] X̂n

Encoder Decoder

∙ Let X be a DMS∙ Use fixed-length (block) codes (Mn ∈ {1, . . . , 2nR} is an nR-bit sequence)∙ Probability of error: P(n)
e = P{X̂n ̸= Xn}∙ R is achievable if ∃ a sequence of codes such that limn→∞ P(n)

e = 0∙ The information rate of X: R∗ = inf{R : R is achievable}
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Lossless compression

Xn Mn ∈ [1 : 2nR] X̂n

Encoder Decoder

∙ Let X be a DMS∙ Use fixed-length (block) codes (Mn ∈ {1, . . . , 2nR} is an nR-bit sequence)∙ Probability of error: P(n)
e = P{X̂n ̸= Xn}∙ R is achievable if ∃ a sequence of codes such that limn→∞ P(n)

e = 0∙ The information rate of X: R∗ = inf{R : R is achievable}
Information rate is the entropy (Shannon 1948)

R∗ = H(X)∙ Same as in zero-error!
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Distributed lossless compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
X̂n , Ŷn

M1n ∈ [1 : 2nR1]
M2n ∈ [1 : 2nR2]

∙ Again assume fixed length codes

∙ Probability of error: P(n)
e = P{(X̂n , Ŷn) ̸= (Xn ,Yn)}

∙ (R1 , R2) achievable if ∃ a sequence of codes such that limn→∞ P(n)
e = 0
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Distributed lossless compression

Xn

Yn

Encoder 1

Encoder 2

Decoder
X̂n , Ŷn

M1n ∈ [1 : 2nR1]
M2n ∈ [1 : 2nR2]

∙ Again assume fixed length codes

∙ Probability of error: P(n)
e = P{(X̂n , Ŷn) ̸= (Xn ,Yn)}

∙ (R1 , R2) achievable if ∃ a sequence of codes such that limn→∞ P(n)
e = 0

∙ The common information rate

R∗ = H(X) + H(Y ) − inf{R1 + R2 : (R1 , R2) is achievable}
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Distributed lossless compression

∙ The common information rate

R∗ = H(X) + H(Y ) − inf{R1 + R2 : (R1 , R2) is achievable}
Common information rate is mutual information (Slepian–Wolf 1973)

R∗ = I(X ; Y ) = H(X) + H(Y ) −H(X , Y )
∙ The same compression rate as if X and Y are compressed together!
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Distributed lossless compression

∙ The common information rate

R∗ = H(X) + H(Y ) − inf{R1 + R2 : (R1 , R2) is achievable}
Common information rate is mutual information (Slepian–Wolf 1973)

R∗ = I(X ; Y ) = H(X) + H(Y ) −H(X , Y )
∙ Example: (X ,Y ) is SBES, I(X ; Y ) = 1 − p = R∗

C (zero-error)

0

1

0

1

e

1 − p

1 − p

X ∼ Bern(1/2) Y

El Gamal (Stanford University) Approximate common information Viterbi Lecture 26 / 36



Distributed lossless compression

∙ The common information rate

R∗ = H(X) + H(Y ) − inf{R1 + R2 : (R1 , R2) is achievable}
Common information rate is mutual information (Slepian–Wolf 1973)

R∗ = I(X ; Y ) = H(X) + H(Y ) −H(X , Y )
∙ Example: (X ,Y ) is SBES, I(X ; Y ) = 1 − p = R∗

C (zero-error)

∙ Example: (X ,Y ) is DSBS, I(X ; Y ) = 1 − H(p), R∗
C = 0, 0 < p < 1

0

1

0

1
1 − p

1 − p

X ∼ Bern(1/2) Y
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Distributed lossless compression

∙ The common information rate

R∗ = H(X) + H(Y ) − inf{R1 + R2 : (R1 , R2) is achievable}
Common information rate is mutual information (Slepian–Wolf 1973)

R∗ = I(X ; Y ) = H(X) + H(Y ) −H(X , Y )
∙ Example: (X ,Y ) is SBES, I(X ; Y ) = 1 − p = R∗

C (zero-error)

∙ Example: (X ,Y ) is DSBS, I(X ; Y ) = 1 − H(p), R∗
C = 0, 0 < p < 1∙ Also, I(X ; Y ) = 0 only if X and Y are independent∙ Hence, captures dependence better than previous measures
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Distributed approximate simulation

Wn ∈ [1 : 2nR] Alice

Bob

X̂n

Ŷn

∙ Wn randomly distributed over [1 : 2nR] (random nR-bit sequence)∙ Wish to simulate (Xn ,Yn) i.i.d. ∼ p(x, y) approximately
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Distributed approximate simulation

Wn ∈ [1 : 2nR] Alice

Bob

X̂n

Ŷn

∙ Wn randomly distributed over [1 : 2nR] (random nR-bit sequence)∙ Wish to simulate (Xn ,Yn) i.i.d. ∼ p(x, y) approximately∙ Total variation distance between (X̂n , Ŷn) and (Xn ,Yn):
dn = H

(xn ,yn)

!!!! pX̂n ,Ŷn(xn , yn) − nI
i=1

pX ,Y (xi , yi) !!!!
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Distributed approximate simulation

Wn ∈ [1 : 2nR] Alice

Bob

X̂n

Ŷn

∙ Wn randomly distributed over [1 : 2nR] (random nR-bit sequence)∙ Wish to simulate (Xn ,Yn) i.i.d. ∼ p(x, y) approximately∙ Total variation distance between (X̂n , Ŷn) and (Xn ,Yn):
dn = H

(xn ,yn)

!!!! pX̂n ,Ŷn(xn , yn) − nI
i=1

pX ,Y (xi , yi) !!!!
∙ R is achievable if ∃ a sequence of generators with limn→∞ dn = 0∙ The common information rate: R∗ = inf{R : R is achievable}
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Distributed approximate simulation

Common information rate is Wyner (1975) common information

R∗ = J(X ;Y ) = min
X→W→Y

I(X ,Y ;W)
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Distributed approximate simulation

Common information rate is Wyner (1975) common information

R∗ = J(X ;Y ) = min
X→W→Y

I(X ,Y ;W)
∙ Example: SBES

0

1

0

1

e

1 − p

1 − p

X ∼ Bern(1/2) Y
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Distributed approximate simulation

Common information rate is Wyner (1975) common information

R∗ = J(X ;Y ) = min
X→W→Y

I(X ,Y ;W)
∙ Example: SBES
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0

0.2

0.4

0.6

0.8
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Distributed approximate simulation

Common information rate is Wyner (1975) common information

R∗ = J(X ;Y ) = min
X→W→Y

I(X ,Y ;W)
∙ Example: SBES, J(X ; Y ) = R∗

S (exact common information)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

J(X
;Y

)

p
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Summary

∙ There are several well-motivated measures of common information
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Summary

∙ There are several well-motivated measures of common information

∙ For distributed compression:

é Zero-error: R∗
C (no computable expression)

é Lossless: I(X ;Y) (mutual information)
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Summary

∙ There are several well-motivated measures of common information

∙ For distributed compression:

é Zero-error: R∗
C (no computable expression)

é Lossless: I(X ;Y) (mutual information)

∙ For distributed key generation: K(X ; Y ) (GKW common information)

é Same for approximate key agreement
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Summary

∙ There are several well-motivated measures of common information

∙ For distributed compression:

é Zero-error: R∗
C (no computable expression)

é Lossless: I(X ;Y) (mutual information)

∙ For distributed key generation: K(X ; Y ) (GKW common information)

é Same for approximate key agreement

∙ For distributed simulation:

é Exact simulation: R∗
S (no computable expression)

é Approximate simulation: J(X ;Y) (Wyner common information)
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Comparing common information measures

0 ≤ K(X ; Y ) ≤ R∗
C ≤ I(X ; Y ) ≤ J(X ;Y ) ≤ R∗

S ≤ min{H(X),H(Y )}
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Comparing common information measures

0 ≤ K(X ; Y ) ≤ R∗
C ≤ I(X ; Y ) ≤ J(X ;Y ) ≤ R∗

S ≤ min{H(X),H(Y )}

∙ Common information between X and Y ≤ information of each∙ Strict inequality for SBES:

é H(X) = 1, H(Y) = (1 − p) + H(p)
é R∗

S = H(p) if p > 1/2
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Comparing common information measures

0 ≤ K(X ; Y ) ≤ R∗
C ≤ I(X ; Y ) ≤ J(X ;Y ) ≤ R∗

S ≤ min{H(X),H(Y )}

∙ Common information for approximate distributed simulation ≤ for exact∙ Equal for SBES (ISIT 2014)

∙ Open problem: Are they equal in general?
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Comparing common information measures

0 ≤ K(X ; Y ) ≤ R∗
C ≤ I(X ; Y ) ≤ J(X ;Y ) ≤ R∗

S ≤ min{H(X),H(Y )}

∙ Strict inequality for SBES:

é I(X ;Y) = 1 − p

é J(X ;Y) = 1 if p ≤ 1/2
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Comparing common information measures

0 ≤ K(X ; Y ) ≤ R∗
C ≤ I(X ; Y ) ≤ J(X ;Y ) ≤ R∗

S ≤ min{H(X),H(Y )}

∙ Common information for distributed zero-error compression ≤ for lossless∙ Strict inequality for DSBS:

é R∗
C = 0

é I(X ;Y) = 1 −H(p)
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Comparing common information measures

0 ≤ K(X ; Y ) ≤ R∗
C ≤ I(X ; Y ) ≤ J(X ;Y ) ≤ R∗

S ≤ min{H(X),H(Y )}

∙ Common part needs to be sent only once in distributed compression∙ Strict inequality for SBEC:

é K(X ;Y) = 0

é R∗
C = 1 − p
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Conclusion

∙ Entropy is a universal measure of information

é For both zero-error and lossless compression

é For randomness generation and source simulation
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Conclusion

∙ Entropy is a universal measure of information

é For both zero-error and lossless compression

é For randomness generation and source simulation

∙ The story for common information is much richer:

é Five well-motivated common information measures

K ≤ R∗
C ≤ I ≤ J ≤ R∗

S

é They are not always equal!

é Some don’t seem to be computable in general

é Different for zero-error distributed compression from lossless

é Are they also different for exact distributed simulation from approximate?
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