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Introduction Overview

What is a Multi-Robot System?

Formally, a collection of two or more autonomous mobile robots
working together is termed as team or society of mobile robots.

MIT Computer Science and “Roma Tre" University Zaragoza University
Artificial Intelligence Robotics and Sensor Fusion Robotics, Perception and
Laboratory Laboratory Real-Time Group
Reference:

@ L. E. Parker. “"Multiple Mobile Robot Systems”. In: Springer Handbook
of Robotics. Ed. by B. Siciliano and O. Khatib. Springer Handbooks,
2008. Chap. 40
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Introduction Overview

Why would | want it?

Multi-robot systems can be of interest for several reasons:
@ the task complexity is too high for a single robot,
@ the task is inherently distributed,

@ the design of several resource-bounded robots is much easier
than a single powerful one,

@ multiple robots can solve problems faster using parallelism,

@ the introduction of multiple robots increases robustness
through redundancy.
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Introduction Overview

How can a taxonomy be drawn?

A taxonomy of Multi-Robot Systems can be derived considering:

@ Nature of the Team
@ Control Architecture

@ Communication Scheme
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Introduction Nature of the Team
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Introduction Nature of the Team

Homogeneous vs Heterogeneous

A team of robots might consist of identical units or different units.

Homogeneous Team Heterogeneous Team
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Introduction Nature of the Team

Homogeneous Team of Robots

Typical of swarms robotics. Classical properties are:

(]

Each unit has the same capabilities

(]

High level of redundancy

Little ability to solve meaningful tasks for each robot

Higher ability to solve task by teaming-up (superadditivity)
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Introduction Nature of the Team

Heterogenous Team of Robots |

Complex applications of large-scale robot teams may require:

@ the simultaneous use of multiple types of sensors,

@ the simultaneous use of multiple types of robots.

For instance:

@ Some sensors may be too expensive to duplicate across all
robots on the team,

@ Some robots may need to be scaled to smaller sizes, which
will limit their payloads.
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Introduction Nature of the Team

Heterogenous Team of Robots Il

@ Heterogeneity can offer economic benefits:

It might be cheaper to distribute different capabilities across
multiple team members rather than to build many copies of
monolithic robots.

@ Heterogeneity can offer engineering benefits:

It may simply be too difficult to design individual robots that
incorporate all of the sensing, computational, and effector
requirements of a given application
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Introduction Control Architecture

Overview

The design of the overall control architecture for the multi-robot
team has a significant impact on:

@ robustness @ scalability

Different kind of architectures can be considered:
@ Centralized @ Distributed
@ Hierarchical @ Hybrid
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Introduction Control Architecture

Centralized

Centralized architectures assume the coordination of the entire
team to be carried out by a single point of control.

Advantages:
@ Control system design,

@ Overall achievable performances.

Drawbacks:
@ Communication complexity to achieve real-time control,

@ Vulnerability to single point of failure.
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Introduction Control Architecture

Hierarchical

Hierarchical architectures assume that each robot oversees the
actions of a relatively small group of other robots, each of which in
turn oversees yet another group of robots, and so forth, down to
the lowest robot, which simply executes its part of the task.

Advantages:
@ Scalability w.r.t. centralized approaches,

Drawbacks:

o Fragility with respect to certain failures, e.g., robots “high” in
the control tree.
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Introduction Control Architecture

Decentralized

Decentralized architectures require robots to take actions based
only on knowledge local to their situation.

Advantages:
@ Robustness to failure,

@ Control design.

Drawbacks:
@ Achieving global coherency,

@ Overall achievable performances.
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Introduction Control Architecture

Hybrid control architectures combine local control with higher-level
control approaches to enhance both robot autonomy and explicit
coordination.

Advantages:
@ Overall achievable performances,

@ Robustness to failure.

Drawbacks:
@ Overall system design,

@ Scalability w.r.t. the tasks.
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Introduction Communication Scheme

Overview

A fundamental assumption in multi-robot systems research is that:

“globally coherent and efficient solutions can be achieved through
the interaction of robots lacking complete global information”

I

Achieving these globally coherent solutions typically requires robots
to obtain information about their teammates states or actions.
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Introduction Communication Scheme

Taxonomy

Information can be gathered in a number of ways. The three most
common techniques are:

@ Implicit communication through the world
@ Passive action recognition

@ Explicit (intentional) communication
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Introduction Communication Scheme

Implicit communication through the world

Robots sense the effects of teammate's actions through their
effects on the world (Stigmergy).

Advantages

@ Appealing because of its simplicity and its lack of dependence
upon explicit communications channels and protocols.

Drawbacks

@ It is limited by the extent to which a robot's perception of the
world reflects the salient states of the mission the robot team
must accomplish.
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Introduction Communication Scheme

Passive action recognition

Robots use sensors to directly observe the actions of their
teammates.

Advantages

@ Appealing because it does not depend upon a limited
bandwidth, fallible communication mechanism.

Drawbacks

@ It is limited by the degree to which a robot can successfully
interpret its sensory information, as well as the difficulty of
analyzing the actions of robot team members.
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Introduction Communication Scheme

Explicit (intentional) communication

Robots directly and intentionally communicate relevant
information through some active means, such as radio.

Advantages

@ Appealing because of its directness and the easiness with
which robots can become aware of the actions and/or goals of
its teammates.

Drawbacks

@ It is limited in terms of fault tolerance and reliability, because
it typically depends upon a noisy, limited-bandwidth
communications channel.
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Introduction Communication Scheme

How to pick one out?

Selecting the appropriate means of communication is a design
choice dependent upon the tasks to be achieved

Observations:

@ Costs and benefits of alternative communications approaches
must be carefully analyzed to determine the method that can
reliably achieve the required level of system performance.

@ Researchers generally agree that communication can have a
strong positive impact on the performance of the team.
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Introduction Communication Scheme

How much should we communicate?

A nonlinear relationship exists between the amount of information
exchanged and its impact on the performance of the team.

@ Even a small amount of information can have a significant
impact on the team

@ More information might not continue to improve performance,
e.g., bandwidth overload with no application benefit

The challenge is to discover the optimal pieces of information to
exchange that yield these performance improvements without
saturating the communications bandwidth

Ming Hsieh Institute (USC) — Andrea Gasparri Multi-Robot Systems: A Control Perspective 24 / 134



Introduction Research Interests

Introduction

Research Interests

Ming Hsieh Institute (USC) — Andrea Gasparri Multi-Robot Systems: A Control Perspective 25 / 134



Introduction Research Interests

What are the related Research Problems?

Major research areas concerning Multi-Robot Systems are:
@ Localization, Mapping and Exploration
@ Task Allocation and Sequencing

@ Distributed Coordination

References:

@ Sebastian Thrun and John J. Leonard. “Simultaneous Localization and
Mapping”. In: Springer Handbook of Robotics. Ed. by B. Siciliano and
O. Khatib. Springer Handbooks, 2008. Chap. 37

@ P. Brass, F. Cabrera-Mora, A. Gasparri, and Xiao Jizhong. “Multirobot Tree and
Graph Exploration”. In: IEEE Transactions on Robotics 27.4 (2011),
pp. 707-717

@ M.B. Dias, Robert Zlot, N. Kalra, and A. Stentz. “Market-Based Multirobot
Coordination: A Survey and Analysis”. |n: Proceedings of the IEEE 94.7
(2006), pp. 1257-1270
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Algebraic Graph Theory Preliminaries

Quadratic Forms

Definition
In mathematics, a quadratic form is a homogeneous polynomial of
degree two in a number of variables:

Q(x) = axi + bx3 + cx1 x (1)

A quadratic form can always be expressed by using a vector x € R”
and a symmetric matrix A € R"*" as follows:

Q(x) = xTAx (2)
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Algebraic Graph Theory Preliminaries

Positive Definiteness |

@ An n x n real symmetric matrix M is positive definite if:
zTMz>0, zeR"z#0, (3)
where zT denotes the transpose of z.
@ An n x n real symmetric matrix M is positive semi-definite if:
z"Mz>0, z €R", (4)

where zT denotes the transpose of z.
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Algebraic Graph Theory Preliminaries

Positive Definiteness |l

How can we check the positiveness of a real symmetric matrix A?

By looking at its spectrum!!!
A real symmetric matrix A is positive definite iff all its eigenvalues
are positive, namely:
A>0 < X\ >0, VXo(A)

Observations:
A real symmetric matrix A can always be diagonalized by means of
an orthogonal matrix Q, i.e. a matrix such that Ql=q".
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Algebraic Graph Theory Preliminaries

Positive Definiteness IlI

A real matrix M may have the property that x” Ax > 0 for all
nonzero real vectors x without being symmetric.

How can we check the positiveness of a real matrix A?

By looking at the spectrum of its symmetric part!!!
Definition:
The symmetric part AT of a matrix A € R"™ " can be defined as:

A+ AT

Ming Hsieh Institute (USC) — Andrea Gasparri Multi-Robot Systems: A Control Perspective 31 /134



Algebraic Graph Theory Preliminaries

Gerschgorin Circle Theorem |

The Gershgorin circle theorem can be used to provide a bound for
the spectrum of a square complex matrix A.

Let the Gershgorin disc D; associated with the i-th row be defined
as:

D;:{ZECZ |z—a,-,-| SR;}, R;:Z|a,-j| (6)
J#i
with R; the sum of the absolute values of the off-diagonal entries
in the i-th row.
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Algebraic Graph Theory Preliminaries

Gerschgorin Circle Theorem Il

The Gershgorin circle theorem states that every eigenvalue of the
complex matrix A lies within the union of the Gershgorin discs D;,
that is:
n
A€ | Di, VA € o(A),
i=1

where o(+) is the set of eigenvalues of a matrix.
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Algebraic Graph Theory Graph Modeling
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Algebraic Graph Theory Graph Modeling

Multi-Agent System Modeling |

Multi-agent systems (MASs) represent an ideal abstraction of
actual networks of mobile robots or sensor nodes that are
envisioned to perform the most various kind of tasks.
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Algebraic Graph Theory Graph Modeling

Multi-Agent System Modeling ||

The interaction among agents is capture by the network topology
which can be described by means of a graph G = {V/, E}.

4

Tools coming from the Algebraic Graph Theory can be used to
formally describe the interaction among the agents.

e ﬁ*’i

'i @ y
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Algebraic Graph Theory Graph Modeling

Definitions Il

Consider a MAS described by an undirected graph G = (V, E).

A matrix based representation can be obtained by introducing:

@ Adjacency Matrix (A): is a binary matrix used to represent
which vertices (or nodes) of a graph are adjacent to which
other vertices,

@ Degree Matrix (D): is a diagonal matrix which contains
information about the degree of each vertex

@ Laplacian Matrix (L): is a matrix representation of a graph.
It can be used to find many properties of the graph
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Algebraic Graph Theory Graph Modeling

Definitions Il

Adjacency Matrix

[N eoNel N

O, OOO

cCoOoOmrR, R, OR
O OO KRR
—O OO RrRO
—OOR OO

This matrix is symmetric if and only if the graph is undirected.
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Algebraic Graph Theory Graph Modeling

Definitions IV

Degree Matrix

)

O
OO OO ON
OO OO WwOo
OO O WwWwoOo
OO NOOO
ON OO OO
N O OO OO

In the case of a directed graph, there are two different degree
matrices: 1) in-degree matrix, 2) out-degree matrix.
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Algebraic Graph Theory Graph Modeling

Definitions V

Laplacian Matrix

0
-1 3 -1 -1 0 0

Q 0 -1 -1 3 0 -1 0
0 -1 0 2 0 -1

0 0 -1 0 2 -1

2

e e . 0 0 0 -1 -1 ]

The Laplacian matrix can be defined by starting from the
adjacency matrix (A) and degree matrix (D) as L = D—A.
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Algebraic Graph Theory Graph Modeling

Laplacian Matrix: Properties |

Consider a n x n Laplacian matrix L of an undirected graph:

@ L is a symmetric positive semi-definite matrix,

@ L hasrank (L) = n— ¢, with ¢ the number of connected
components,

Notation:
In the following, the eigenvalues of the Laplacian matrix L of a
connected graph will be denoted as follows:

O=M << ... <An<min{2A,n}
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Algebraic Graph Theory Graph Modeling

Laplacian Matrix: Properties Il

If the graph G is connected, the Laplacian matrix L has:
o N\ =0withwyy =1
017 =0TandL1=0

A2 is the algebraic connectivity

(]

Amax < 2 A, with A the maximum degree.

® Amax < n, with n the number of vertexes.
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Lyapunov Theory System Equilibria

Lyapunov Theory
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Lyapunov Theory System Equilibria

Equilibrium Points |

Consider a non-linear system:
x=f(x), f:R"—=R" (7)
A point X is said to be an equilibrium point if:
f(xe) =0 (8)

Observations
@ A linear system has either one equilibrium point (the origin) or
a subspace of equilibrium points

@ A nonlinear system might have several (isolated) equilibrium
points

Reference:

@ Hassan K. Khalil. Nonlinear Systems (3rd Edition). 3rd ed. Prentice Hall,
Dec. 2001. 1sBN: 0130673897
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Lyapunov Theory System Equilibria

Equilibrium Points |l

Let us consider a linear dynamical system:
x = Ax (9)
with a state-transition matrix A defined as:
01
A= 1] a0

The subspace of equilibrium points is given by:

Axe =0 thatis x. € N(A) (11)
that is:
xe:a[é], aeR (12)
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Lyapunov Theory System Equilibria Stability

Stability of Equilibrium Points

Suppose xe is an equilibrium point, then x. is stable if:

Ve, 30(e) : ||x(0)—xe|| < d(e) = |Ix(t)—xe|| <€, ¥Vt >0 (13)

N

(o

)

Ve 35(6) X0 — Xe| < & [x(t) = xe| < &Vt> 0

An equilibrium point x. is stable if the trajectory x(t) can be kept
arbitrarily close to it over time by opportunely choosing the initial
conditions x(0). The equilibrium is said unstable otherwise.
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Lyapunov Theory System Equilibria Stability

Stability of Equilibrium Points

Suppose xe is an equilibrium, then x, is asymptotically stable if:

i)  Xxe is stable
i) 305 1 [[x(0) — xe|| < 05 = tILngo Ix(t) — xe|| =0 (14)
with 0, the radius of the attraction domain.

Observations:

@ Asymptotic stability is a local concept (it depends upon the
attraction domain )
@ The condition ii) does not imply the condition i)

@ The asymptotic stability is global if it holds for any initial
condition, i.e., the attraction domain is R” and there is a
unique Xe
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Lyapunov Theory System Equilibria Stability

Lyapunov Function |

Consider a continuously differentiable function V : S(xe, r) — R:
@ V/(x) is positive definite in S(xe, r) if:
—a) V(xe) =0
-b) V(x) >0, VxeS(xe,r)
@ V/(x) is positive semi-definite in S(xe, r) if:
—a) V(xe) =0
-b) V(x) >0, Vxe S(xe,r)
Observations:
@ V/(x) is negative (semi) definite if —V/(x) is positive (semi)

definite
@ A quadratic form can represent a candidate Lyapunov function
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Lyapunov Theory System Equilibria Stability

Lyapunov Function Il

Example of a positive definite Lyapunov function V : R? — R:

X3

X1

e contour plot

V(x)=x"x=x2+x3, xcR?
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Lyapunov Theory System Equilibria Stability

Lyapunov Function Derivative

Compute the Lyapunov time derivative V:R" > R as:

) oV ox; 0V
V() = Z ox 9t ox (15)

By substituting the dynamics of the system x = f(x) it follows:

V(t) = gz aa—Zf(x):V(x) (16)

V(x) is the derivative of V/(x) along the trajectories of the system
x = f(x).
Observations:

o If V(x) <0, then V/(x) decreases along the trajectories of the
system.
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Lyapunov Theory System Equilibria Stability

Lyapunov Stability ldea

(]

Consider the function V(x) to be an energy-like function

If the energy of the system is constantly dissipating (V <0)

The system must tend towards an equilibrium point s.t. V=0

4

The stability of the system can be studied “simply” by
analyzing a scalar function V/(x)

@ A closed form for the system trajectories is not required to
understand the “qualitative” behavior of the system
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Lyapunov Theory System Equilibria Stability

Lyapunov Stability

Theorem: Let x. € R" be an equilibrium point for the system (8).
Then x is stable if there exits a Lyapunov function V : R" — R
such that:

i) V(x) is positive definite in S(xe, r)

ii) V(x) is negative semi definite in S(xe, r)
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Lyapunov Theory System Equilibria Stability

Lyapunov Asymptotic Stability

Theorem: Let x. € R" be an equilibrium point for the system (8).
Then x. is asymptotically stable if there exits a Lyapunov function
V :R"” — R such that:

i) V(x) is positive definite in S(xe, r)

ii) V(x) is negative definite in S(xe, r)
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Lyapunov Theory System Equilibria Stability

Lyapunov Global Asymptotic Stability

Theorem: Let x. € R" be an equilibrium point for the system (8).
Then x, is globally asymptotically stable if there exits a Lyapunov
function V : R” — R such that:

i) V(x) is positive definite in R”
ii) V(x) is negative definite in R”

lii) V/(x) is radially unbounded, that is limy,_,, |0 V(x) = 00

2
Radially bounded v = —X1_ 4+ x2 Radially unbounded  V = x2 + x2
T+ x

i
il
Jt o
i G0,
Qs NSN3
it et
A\

AN DN

NSKKLALZ
\\%\\\% W:,g{,/
N =S

N
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Consensus Problem
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Consensus Problem

Problem Definition |

In networks of agents (or dynamic systems), consensus means to
reach an agreement regarding a certain quantity of interest that
depends on the state of all agents.

A consensus algorithm (or protocol) is a local interaction rule that
specifies the information to be exchanged between neighboring
agents on the network to reach such an agreement.

Reference:

@ R. Olfati-Saber, J.A. Fax, and R.M. Murray. “Consensus and Cooperation
in Networked Multi-Agent Systems”. In: Proceedings of the IEEE 95.1
(2007), pp. 215-233
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Consensus Problem
Problem Definition Il

Bias . Control 1/S 0 0 Output

b u 0 1/s ... 0 y=z
. .. . >
i T 0 0 ... 1/s
L

<
<%

Consensus Feedback

Two equivalent forms of consensus algorithms:

(a) a network of integrator agents in which agent i receives the
state z; of its neighbor, agent j, if there is a link ej
connecting the two nodes;

(b) the block diagram for a network of interconnected dynamic
systems all with identical transfer functions P(s) =1/s. The
collective networked system has the Laplacian matrix in the
feedback loop.
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Consensus Problem Continuous Time

Consensus Problem

Continuous Time
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Consensus Problem Continuous Time

Problem Stament |

Assume each agent i has a single integrator dynamics:

2; = Uuj (17)

Consider the following control law u; for an agent i:
()= (z(t) — z(1)) (18)
JEN;
with Nj = {i € V : ej € E} the neighborhood of agent i.
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Consensus Problem Continuous Time

Problem Stament I

The collective dynamics of the group of agents is:

2(t) = —Lz(1), (19)
with:
® z=[z1, ..., z]" the stacked vector of agents state

@ L the graph Laplacian of the network whose elements are:

lij=q Wil =1, (20)
0 otherwise.

with A\; denotes the number of neighbors of node i.
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Consensus Problem Continuous Time

Main Result

Theorem: Consider the collective dynamics given in eq. (19), if
the graph is connected a consensus is asymptotically achieved to
the average of the initial state {z;(0)}"_, of all nodes, that is:

z(oo) =a -1, (21)

where
n

o= % Zz;(O), (22)
i=1

with a convergence rate equal to:

k= X2(G) (23)
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Consensus Problem Continuous Time

Convergence Rate - Proof - |

@ Let us define the disagreement vector as
o(t) = z(t) — al (24)

whose dynamic is

5(t) = —Lo(¢) (25)
@ Let us consider the following Lyapunov Function:
1 2
V(t) = 5150 (26)
@ Let us consider the derivative:

V(t) =0(t)T(t) = —o(t)T Lo(¢) (27)

Ming Hsieh Institute (USC) — Andrea Gasparri Multi-Robot Systems: A Control Perspective 62 / 134



Consensus Problem Continuous Time

Convergence Rate - Proof - |l

@ Let us recall the inequality:
o(t)" La(t) = X (G) I8(e)II?, Vo(r) : 178(t) =0 (28)
@ By substituting within the derivative:
V(t) = =6(t)" L(t) < —a(G) (1) (29)
@ Thus, denoting Kk = \2(G):

V(t) < —2kV(t) <0 (30)
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Consensus Problem Continuous Time

Convergence Rate - Proof - Ill

@ From the exponential stability property we have:
[8(8)]| < Me™"*[[5(0)]I. (31)

with M an opportune constant.

@ This implies that:
lo(t)|| =0, t— o0 (32)

It follows that:
z(t) > al, t— o0 (33)

@ The coefficient a can be determined by applying the left
eigenvector property to the null eigenvalue:

v z(t) = e Mty,T 2(0) (34)

Ming Hsieh Institute (USC) — Andrea Gasparri Multi-Robot Systems: A Control Perspective 64 / 134



Consensus Problem Continuous Time

Convergence Rate - Proof - IV

@ Recall that for \; = 0 the left eigenvector is v; = 1, thus:
172(t) = 17 2(0) (35)
as t — oo this becomes:

1721 =172(0)

an= ; z;(0) (36)
a= E z;(0)
i=1
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Consensus Problem Discrete-Time Version

Problem Statement

An iterative version of the consensus algorithm can be stated as
follows in discrete-time:

zi(k+1) = zi(k) + ¢ > (zi(k) — zi(k)) (37)
JEN;

The discrete-time collective dynamics of the network can be

written as:
z(k+1) = Pz(k) (38)

where
P=1]—-¢lL (39)

is the Perron matrix of the graph G with parameter e.
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Consensus Problem Discrete-Time Version

Special Non-negative Matrices

Three different non-negative matrices are of interest for the
analysis of the discrete-time consensus algorithm:

@ Irreducible: A (non-negative) matrix is reducible if and only if
its associated digraph is not strongly connected.

@ Stochastic: A (non-negative) matrix is called row (or column)
stochastic if all of its row-sums (or column-sums) are 1.

@ Primitive: An irreducible stochastic matrix is called primitive
if it has only 1 eigenvalue with maximum modulus.

Note:
In the case of an undirected graph, then a matrix is irreducible i.f.f.
the graph is connected.
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Consensus Problem Discrete-Time Version

Perron-Frobenius Theorem

Let us consider a primitive non-negative matrix P whose left
eigenvector w and right eigenvector v satisfy the following

conditions:
Pv = v, (40)
w'p = w', (41)
viw = 1. (42)
Then, the following holds:
lim Pk=vw’. (43)
k— 00
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Consensus Problem Discrete-Time Version

Main Result

Theorem: Consider the collective dynamics given in eq. (38), if
the graph is connected and 0 < € < 1/Apax, then a consensus is
asymptotically achieved to the average of the initial state of all
nodes, that is:

z(c0) = a1, (44)
with:

a= % Zz;(O), (45)

with z;(0) the initial state of agent i.
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Consensus Problem Discrete-Time Version

Main Result - Proof Sketch |

To prove the theorem, we must prove that:

@ P is a primitive matrix with only 1 eigenvalue of modulus 1.

@ The (orthonormal) left and right eigenvectors of the matrix P
are respectively v =1 and w = (1) 1

Then, the result follows from the Perron-Frobenius Theorem:

lim x(k) = vw'x(0)

- =1 (%) (17x(0))

1 n
= ;;x,-(O) 1

—_———

«

(46)
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Consensus Problem Discrete-Time Version

Main Result - Proof Sketch Il

Let us show that P is primitive:
@ Irreducible: It follows from the connectivity of the graph G

@ Stochastic: It follows from the structure of the Perron matrix:
Pl1=(l-¢eL)1=1 (47)

e J! p(P) = 1: It follows from the fact that:

— The eigenvalues of L are:
Ai < Amax, YA € o(L)
— The coefficient € is
0<e<1/Amax
— Then the eigenvalues of P are:

0<1l—eXN<1,Vu;€a(P)
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Consensus Problem Discrete-Time Version

Main Result - Proof Sketch Ill

For the right eigenvector w associated to the eigenvalue p(P) =1
we have that:

P1=11 (48)

For the left eigenvector v associated to the eigenvalue p(P) =1
we know that P is symmetric, thus:

1"p=117 (49)

By imposing the orthonormality condition it follows that:

T

w'v=1

(61)71=1
Bn=1 (50)

51

n
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Consensus Problem Further Results

Overview

These basic results have been extended in several directions:

(]

Switching Network Topologies

Directed Network Topologies

Time-Delays Communication

(]

Higher-Order Dynamics

@ Finite-Time Consensus protocols

Sample-Data Framework
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