USCViterbi

School of Engineering

Ming Hsieh Department of Electrical Engineering

Automated Classification of Epileptogenic Zone

Andrew (Jian) Li, Olesya Grinenko, John Mosher, Juan Bulacio, Patrick Chauvel, Richard M. Leahy

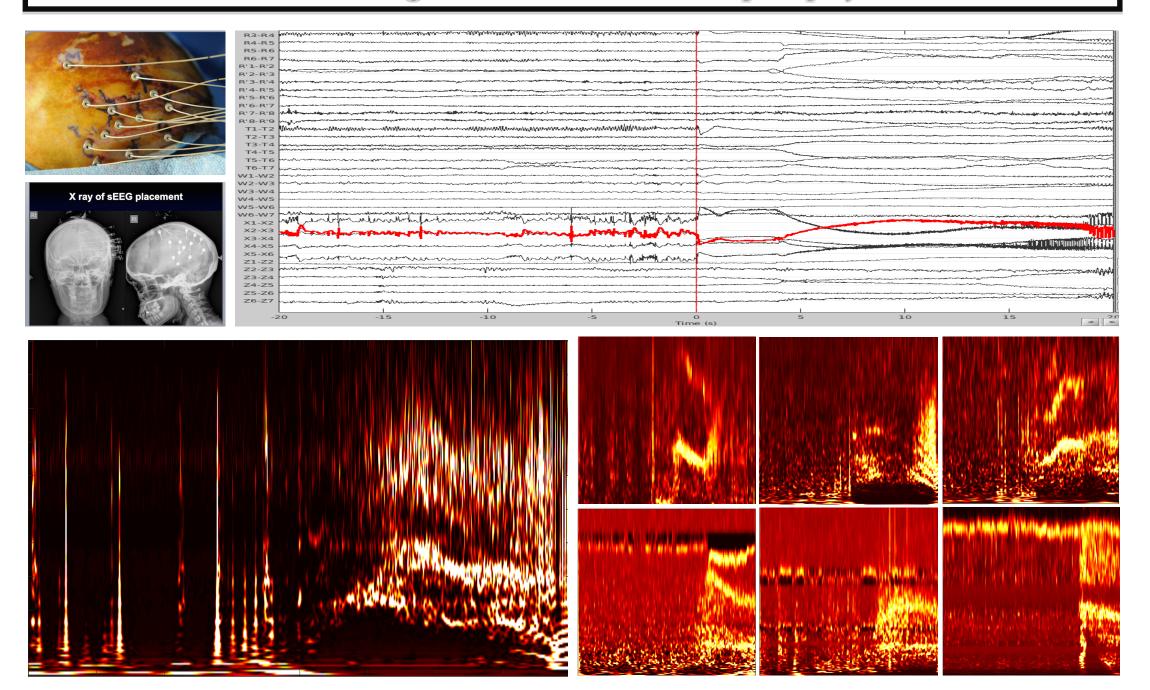
Motivation & Introduction

- Epilepsy is a neurological disorder of the brain that affects approximately 50 million people around the world
- More than 30% of those patients suffer from refractory focal epilepsy where regular anti-epileptic drugs fail to take effects
- Surgical resection of the epileptogenic zone (EZ) can be an effective treatment for curing refractory focal epilepsy but 50% are not seizure free after surgery
- Successful post-operative outcomes strongly rely on an accurate localization of the EZ
- Time-frequency decomposition from SEEG recordings provides a unique insight into the characteristics of EZ

Data & Subject Profiles

Subject #	Age (years)	History (years)	# of Seizures	MRI Result	Follow up (months)	Engel Outcome
1	43	37	3	FCD	13	1A
2	29	22	3	Ν	36	1A
3	33	17	3	Hippocampus	7	1A
4	17	8	3	Ν	16	1A
5	16	1	3	Benign PPG	26	1A
6	46	41	3	FCD	29	1A
7	5	1	3	Ν	21	1A
8	63	14	3	Ν	38	reoccur 2ys
9	33	19	3	Gliotic	12	1A
10	21	11	3	Ν	9	1A
11	32	27	3	FCD	64	1A
12	22	3	3	FCD	30	1A
13	19	18	3	Ν	48	1A
14	30	18	3	Ν	47	1A
15	20	11	3	Ν	58	1A
16	65	25	3	Ν	27	1A
17	65	9	3	Ν	18	1A

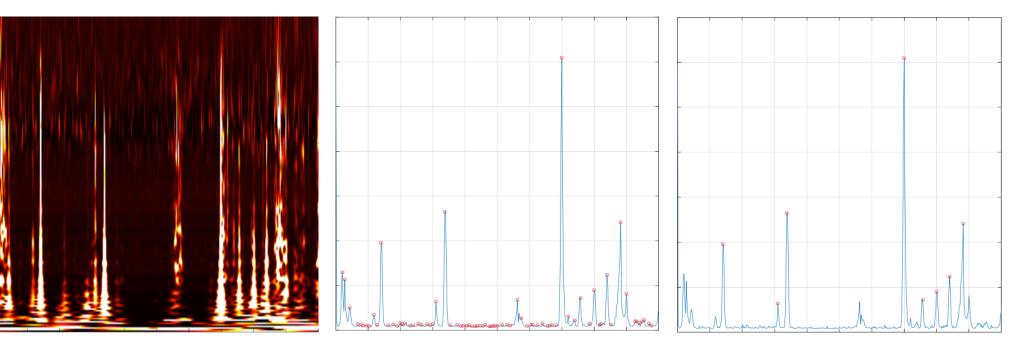
• An automated classification of EZ from non-EZ regions is highly desired and could have a significant impact on success rate of surgical resection for epilepsy



Method & Pipeline

- SEEG recordings are transformed into time-frequency (TF) plots using Morlet wavelet
- Artifacts are identified and removed via complex Independent Component Analysis (cICA)

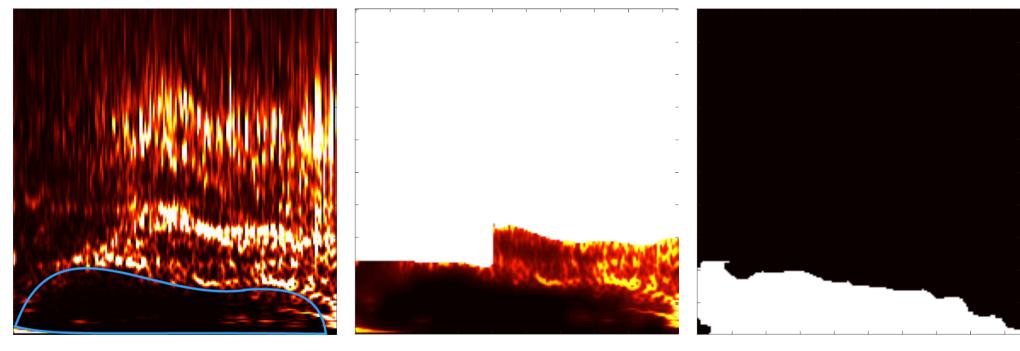
 Pre-ictal Spiking: candidate spikes are found by extracting local maxima of median (in frequency) of time-frequency data at each sample point



- Numerical descriptors are extracted based on the candidates found for each of the three features
- Unsupervised clustering is applied towards those descriptors in order to identify real EZ contacts so that the uncertainty of the resection labels can be handled properly
- A Support Vector Machine (SVM) is trained given those descriptors and labels on the selected channels
- A leave-one-out cross validation is used to avoid overfitting and obtain the prediction for each contacts

- Feature Extraction:
 - Fast Activity: A novel multiscale Frangi filter is proposed for extracting the fast activity mask

 Suppression: TF plot is smoothed using the guided filter and a bounded thresholding is applied for extracting the suppression mask

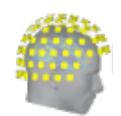


• A voting mechanism is utilized across 3 seizures for the final prediction for each subject

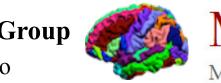
Result & Discussion

	Labelled EZ	Labelled not EZ	
Within Resect	58	322	
Outside Resect	6	827	0.7% (FPR)
	90.6% (PPV)		

- In this retrospective study, more than 90% of putative EZ contacts were within resected region for patients with successful (no seizures) surgical outcomes.
- Potential for use as tool for identifying potential resection targets based on invasive SEEG monitoring.



USC Biomedical Imaging Group http://neuroimage.usc.edu/neuro



Ming Hsieh Department of Electrical Engineering