
Tools Introduction 

Future Directions 

Workflow for 

Scientific VR in Unity 
Immersive Data Visualization 

Beyond Visualization: Active Simulation 

• The Importance of Visual Data: 

Anscombe’s Quartet 

• 2D  3D 

Natural venue for VR 

• The CAVE: 

 Bulky and Expensive 

(Obsolete?) 

• VR Head-Mounted Device 

 Inexpensive and Portable 

• Modern Game Engine: 

Unity or Unreal 

• VR HMD: 

Oculus, HTC Vive 

• Controller: 

Leap Motion, Xbox 

• VMD-generated object files quickly loaded into Unity 

• Leap Motion replaces keyboard and mouse for more 

direct controller experience 

• Unity vertex and fragment shaders help dynamically 

render pieces of the desalination membrane 

• Rendering plane follows head movement via Oculus for 

intuitive viewing control 

• Not limited to visualization  Unity capable of executing simulations 

• C# Kinetic Monte Carlo Code spawned on new thread 

• Simulation populates an animation queue, while Unity pops according to user-specified rate 

 Interactive Simulation Steering 

• Result: Simultaneous simulation 

and rendering in real-time 

• Direct pipelining from VMD to Unity from the command line 

 Direct parsing of simulation data in Unity 

• Generic Kinetic Monte Carlo Visualization 

 Beyond biological electron transfer 

• Visualization of High Performance Simulations via 

Server-Client Communication with Unity 

Generate Objects 

Set Control Scheme 

Simulate 

𝑷𝑷𝑹𝑾,𝜶 = 𝜶∑𝒌=𝟎 
∞ 𝟏 − 𝜶 𝒌 𝑫𝑾 

𝒐𝒖𝒕 −𝟏𝑾 
𝒌 

User-controlled simulation speed 

3D Trajectories Complex Structures 

Sequestered 

Areas 

Special Thanks to Masato Nakano, Moh El-Naggar, Hye Suk Byun, and Tao Wei 




