Ming Hsieh Department of Electrical Engineering

Diffusion-Relaxation Correlation Spectroscopic Imaging (DR-CSI): A Multidimensional Approach for Probing Microstructure

Daeun Kim¹, Eamon K. Doyle^{2,3}, Jessica L. Wisnowsk⁴, Joong Hee Kim⁵, Justin P. Haldar^{1,2}

¹ Electrical Engineering, University of Southern California, ² Biomedical Engineering, University of Southern California, ³ Cardiology, Children's Hospital Los Angeles, ⁴ Radiology, Children's Hospital Los Angeles, ⁵ Neurology and Radiology, Washington University.

Introduction

DR-CSI

- Microstructure and MRI \bullet Millimeter resolution Diffusometry and relaxometry - Multi-compartment model
- μm

mm

2D diffusion-relaxation spectroscopy Imaging Better compartmental separation

Diffusometry and Relaxometry

Multi-compartment modeling

single voxel

Numerical simulation

Fig. 1: (a-c) Numerical simulation setup and estimation results for three different multicompartment datasets with different diffusion-relaxation correlation characteristics

Diffusion-based: $M(b) = \sum_{i} F(D_{i}) e^{-bD_{i}} = hindered + restricted + ...$

the estimated spectrum A+B CANNOT separate !

Relaxation time (ms)

Compartmental ambiguities Exponential estimation is ill-posed

Using both diffusion and relaxation

Diffusion + Relaxation

Phantom experiment

Fig. 2: (a) Structural components used to assemble the custom-built diffusion-relaxation phantom. (b-c) Example data and DR-CSI estimation results obtained with this phantom.

Ex-vivo mouse spinal cord experiment

posed method: DR-CSI

- Advanced contrast encoding 2D diffusion-relaxation \bullet
- **Advanced estimation -** Improved conditioning Lin et al., IEEE TMI 2014, Hwang et al., JMR 2009, Kumar et al., MRM 2012
- **2D** multi-exponential model

 $M(x, y, b, TE) = \sum \sum F(x, y, D_i, T2_j) e^{-TE/T2_j} e^{-bD_i}$

Dictionary-based¹ constrained optimization

Optimization: ADMM Afonso et al., IEEE TIP 2010

Fig. 7: Spatially-averaged spectra and spatial maps of the integrated spectral peaks from conventional 1D methods

Conclusion

2D diffusion-relaxation spectroscopy + imaging Substantial advantages over traditional 1D multi-compartment estimation

- Less compartmental ambiguity
- Better-posed inverse problem

Ming Hsieh Institute Ming Hsieh Department of Electrical Engineering