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I. Introduction II. Methods 

III. Results 

 Identification of brain network dynamics is 

important both for understanding brain 

function and for designing closed-loop 

controllers for control of brain states 

 Linear state-space models (LSSM) are well 

suited for this purpose as: 

□ They allow for modeling of the dynamics through 

a low-dimensional hidden state 

□ They can easily be extended to include inputs 

(e.g. stimulation) into the system 

□ They can be used to design well-established 

estimators (such as the Kalman filter) and 

controllers with performance guarantees (such 

as LQR and model predictive control) 

 In this work we use an LSSM as follows to 

model the spontaneous brain activity: 

ቊ 
𝒙𝑡+1 = 𝐴𝒙𝑡 + 𝒘𝑡 
𝒚𝑡 = 𝐶𝒙𝑡 + 𝒗𝑡 

□ 𝒚𝑡: Neural features extracted from the neural 

signals 

□ 𝒙𝑡: An abstract hidden state representing the 

state of the brain 

1. Datasets 
 Extraoperative electrocorticogram (ECoG) collected 

from 6 Epilepsy patients over periods of several days 

is used in this study (Chang Lab at UCSF). 

sample electrode placement 
2. Neural Features 
 Features are extracted every 1 second 

From each channel, log-power of 5 frequency bands are extracted. 

Bands: [1 8]𝐻𝑧, [8 12]𝐻𝑧, [12 30]𝐻𝑧, [30 55]𝐻𝑧, and [65 100]𝐻𝑧 

3. System Identification 
 LSSM system identification using Subspace Identification (SID) [1] 

 System order is determined based on Akaike information criterion (AIC) 

4. Performance Measure 
 One step ahead prediction error is defined as: 

□ ෝ𝒙𝑡|𝑡−1: Kalman filter prediction of the hidden state 

 Naïve predictor is a model-less predictor that predicts the next sample as 

the current one: 

 Prediction performance for the 𝑖th feature is quantified using Normalized 

Root Mean Square Error: 

 One-sided paired t-test comparing LSSM and Naïve or mean prediction 

(better of the two for each feature) over the test set and across all features. 
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IV. Conclusions 
Linear state-space model (LSSM) captures the neural feature dynamics through a low 

dimensional hidden state 

LSSM is significantly more predictive than Naïve or mean predictor 

Full network LSSM achieves prediction error comparable to that of per electrode 

LSSMs but using significantly lower total order 

1. Identified LSSM Order 
 Identified LSSM order was significantly lower than the 

number of features (a) 

 When every electrode was modeled separately, sum of 

the order of identified LSSMs was significantly higher (a) 

2. Prediction error 
 One step ahead prediction error of the model is 

significantly lower than Naïve or mean prediction (b) 

 Sample prediction for a well predicted feature in a test 

fold is shown below (c) 

Reference 
[1] P. Van Overschee and B. De Moor, Subspace 
Identification for Linear Systems. Boston, MA: Springer 
US, 1996. 

** 

*** 
*** 

*** 
*** a b 

c 

𝑝 < 0.001𝑝 < 0.01 

mailto:omid.ghasemsani@usc.edu



