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B [dentification of brain network dynamics is 1. Dynamical brain network model : iacen bran sat g
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of essential t O . B Time-varying LSSM | S>3 v
1) uncover biomarkers for neurological | s 2 |
disorders such as depression B Focus on adaptive identification of 1 e
2) develop brain-machine-interfaces (BMIs) spontaneous activity in this work Network IO dynamical model

for adaptive closed-loop stimulation
therapies of various neurological disorders
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2. Adaptive identification method y: Cix + Vi

B Propagator-based recursive subspace identification [2]

B Recursive estimation of the column space of the extended observabllity matrix
r;=[C' (CA)', ..(CATHT)!
B The recursive estimation is done through adaptively estimating the propagator

B \We have prewously developed a via minimizing a quadratic cost function
framework to identify time-invariant linear r r I .
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spontaneous neural population dynamics, B Can adaptively estimate an LSSM with a conS|st baS|s

and input-output neural dynamics in

response to electrical stimulation [1] 3. Human ECoG data acquisition and processing

B Electrocorticography (ECoG) data were collected from one I
- - - - atient for weeks. We took raw ECoG data from one electrode ﬁ"-- T
non-stationary and time-varying dynamics, P — e

especially when the patient's brain is from cmgt.JIa.te (~ 168 hours) |
monitored for a long time, e.g., using B Powers within 5 frequency bands, i.e., [1 7]Hz, [8 12]Hz, [12 30]Hz,

electrocorticography (ECoG) 30 100]Hz, and [100 200]Hz are extracted as features

C | 4 to devel B Test adaptive and previous non-adaptive Train with
onsgqu_ent y, We Need 10 deveiop LSSM identification method across 55 @ —»[ Poetation ¢ — =

adaptive identification methods to track train-test pairs Train with

non-stationary dynamics in real time . .
y 2y Performance measure: percentage of fit derived from one-step ahead
prediction error on testing data

However, brain network activity can have
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Figure 1. Simulation results. (a) Identification of the column space of the extended observability

2. Adapt|ve estimation of brain network matrix of an example 39 order constant-LSSM, with true in green, and estimation in black. (b)

dynamics in human ECOG data Identification of a LSSM with step changing poles. (c) Identification of a LSSM with continuous
_ changing poles. (d) Identification of a constant-LSSM with fast poles.
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(Figure 2 (b) — (d)) Figure 2: Human ECoG data analyses. (a) Distribution of adaptive FIT — non-adaptive FIT. (b-d) Examples of prediction

performance of adaptive estimation and non-adaptive estimation. Upper panel shows an example train-test set feature (out of
5). Lower panel shows the prediction performance on testing set. Here average model results from non-adaptive estimation
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The adaptive identification algorithm has bias in estimating poles that are close to
zero. Refinement of the algorithm will be our future work UGSF Mlng HSleh IﬂStltUte
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