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 Time-varying LSSM 

1. Dynamical brain network model 

 Focus on adaptive identification of 

spontaneous activity in this work 

2. Adaptive identification method 

 Propagator-based recursive subspace identification [2] 

 Recursive estimation of the column space of the extended observability matrix 

 The recursive estimation is done through adaptively estimating the propagator 

via minimizing a quadratic cost function 

 Can adaptively estimate an LSSM with a consist basis 

FIT = 100% indicates perfect fit 

3. Human ECoG data acquisition and processing 

 Electrocorticography (ECoG) data were collected from one 

patient for weeks. We took raw ECoG data from one electrode 

from cingulate (~ 168 hours) 

 Powers within 5 frequency bands, i.e., [1 7]Hz, [8 12]Hz, [12 30]Hz, 

[30 100]Hz, and [100 200]Hz are extracted as features 

 Test adaptive and previous non-adaptive 

LSSM identification method across 55 

train-test pairs 

 Performance measure: percentage of fit derived from one-step ahead 

prediction error on testing data 

 Identification of brain network dynamics is 

of essential to 

1) uncover biomarkers for neurological   

disorders such as depression 

2) develop brain-machine-interfaces (BMIs) 

for adaptive closed-loop stimulation 

therapies of various neurological disorders 

 We have previously developed a 

framework to identify time-invariant linear 

state-space models (LSSMs) to describe 

spontaneous neural population dynamics, 

and input-output neural dynamics in 

response to electrical stimulation [1] 

 However, brain network activity can have 

non-stationary and time-varying dynamics, 

especially when the patient's brain is 

monitored for a long time, e.g., using 

electrocorticography (ECoG) 

 Consequently, we need to develop 

adaptive identification methods to track 

non-stationary dynamics in real time 

1. Simulations validate the adaptive 

estimation algorithm 

 Can track various time-variations 

(Figure 1 (a) –(c)) 

 Have bias in estimation of fast poles 

(Figure 1 (d)) 

Figure 1: Simulation results. (a) Identification of the column space of the extended observability 

matrix of an example 3rd order constant-LSSM, with true in green, and estimation in black. (b) 

Identification of a LSSM with step changing poles. (c) Identification of a LSSM with continuous 

changing poles.  (d) Identification of a constant-LSSM with fast poles. 

2. Adaptive estimation of brain network 

dynamics in human ECOG data 

Figure 2: Human ECoG data analyses. (a) Distribution of adaptive FIT – non-adaptive FIT. (b-d) Examples of prediction 

performance of adaptive estimation and non-adaptive estimation. Upper panel shows an example train-test set feature (out of 

5). Lower panel shows the prediction performance on testing set. Here average model results from non-adaptive estimation 

 Adaptive 

estimation 

outperformed non-

adaptive estimation 

( Figure 2 (a)) 

 Examples of 

adaptive and non-

adaptive estimation 

(Figure 2 (b) – (d)) 

IV. Conclusions 
 The adaptive identification algorithm can accurately identify non-stationary human 

ECoG dynamics 

 The adaptive identification algorithm has bias in estimating poles that are close to 

zero. Refinement of the algorithm will be our future work 
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