

Ming Hsieh Department of Electrical Engineering

A Case for 3D Stacked Analog Circuits in High Speed Sensing Systems

Mohammad Abdel-Majeed, Mike Chen, Murali Annavaram

Electrical Engineering Department, University of Southern California

1. Introduction

- •High speed, low power sensing systems are critical
 - •Sensor systems have both digital and analog components
- •CMOS scaling improved digital components
 - •Less power, area and higher speed
- •Analog components (input buffers & amplifiers) negatively impacted:
 - •Matching, transconductance and transistor gain reduced
- •Better linearity and gain requires BICMOS

2. 3D Stacking

stacking integrates multiple technology nodes in the vertical dimension

•Already used to stack memory

•This paper goal:

•TSV-centric 3D integration of future analog-analog/digital interface systems.

- •Target system used to quantify power and performance benefits of 3D
 - •Input buffers receive analog signal and supply it to the ADC.

•Mixing BICMOS and CMOS on the same die is challenging

Table 1:Technology Scaling Trends, L=L_{min}

Tech Node	V _{swing}	Gds(S)	Intrinsic Gain(dB) W/L=10	A _{vt} Match	Max Freq.(GHz)
90nm	0.83	1.63e-4	20	6	170
65nm	0.73	2.00e-4	18	5	240
45nm	0.62	2.62e-4	15	5	320
32nm	0.53	3.47e-4	12	5	400

•ADC is responsible for converting the analog signal into its digital

Basic building blocks for data acquisition systems

3. Three Interface Models: Bond-Wire, Flip Chip, TSV

	L_bond R_bond	Diameter	25um
•Wire bonding and Flip	C_pad C_pad	Length	1mm
Chip models commonly		L _{bond}	1nH
used today.	\downarrow \downarrow	R _{bond}	$10m\Omega$
	Bond Wire	C _{pad}	100fF
•RLC lumped models	L_Flip R_Flip	Diameter	25-50um
developed for the three	C_pad C_pad	Length	.1mm
different interface		L _{flip}	80pH
models		R _{flip}	30mΩ
•Skin effect is taken	Flip Chip	C _{pad}	100fF
into consideration to	Lskin Rskin Lskin Rskin	Diameter	5um
model the interface	L_TSV/2 R_TSV/2 R_TSV/2 L_TSV/2 OUT	Length	50um
behaviour at high		L _{TSV}	34рН
frequencies.	c_tsv	R _{TSV}	44mΩ
*	Ţ	C _{TSV}	200fF
		Dielectric	100nm
		thickness	

4. System Specifications

•RLC models used to interface blocks of the system under study. •High performance building blocks have been implemented using the appropriate and most efficient technology nodes.

• 12 GHz Input buffer implemented in IBM 90nm BICMOS process.

•Input signal has a 3Ghz bandwidth and .3V peak to peak voltage swing.

•A high speed Sample and Hold (S/H) circuit with the specifications listed

in Table 3.

able 3: Specifications for S/H Circuit					
	Signal Frequency	3GHz			
	Sampling Frequency	10GHz			
	Sampling Capacitance	4pF			
	Technology	45nm			
	ENOB	7-bits			
	Tracking BW	>5GHz			

5. Simulation Results

A. Bandwidth

• Interface bandwidth a determining factor for the input signal frequency

•Mainly depends on the input impedance seen at the output of the buffer for a

Table 2: Lumped RLC Models and parameters values

given signal frequency.

Input Impedance

•TSV impedance 8X < .5mm bonding wire •TSV impedance 3X < Flip Chip

Tracking Bandwidth

•TSV •11Ghz tracking bandwidth. •Flip Chip •7.8Ghz

•Bonding Wire

•5.6 GHz.

B. Power

•We measured the Input buffer power consumption when integrated with the ADC using different interfaces.

- •TSV power 10X < 1nH bonding wire.
- TSV power 30% < Flip-chip

C. Signal Integrity

•Two well known metrics: Spurious Free Dynamic Range (SFDR) and signal to noise and distortion ratio (SNDR).

•Transient noise is taken into consideration during simulations.

•The large inductance and the lower tracking bandwidth degrade the obtained SNDR when bonding wire interface is used.

•SNDR varies by 4 dB for different values of the bonding wire inductance.

•Flip chip shows a 2.5dB degradation in the SNDR.

•TSV results similar to the no-interface case

•SNDR for the 5um and 2um TSVs is within0.1dB.