

Ming Hsieh Department of Electrical Engineering

Spontaneous-Speech Acoustic-Prosodic Features Of Children with Autism and the Interacting Psychologist

Daniel Bone¹, Matthew P. Black¹, Chi-Chun Lee¹, Marian E. Williams², Pat Levitt³, Sungbok Lee¹, Shrikanth Narayanan¹ USC: SAIL¹, University Center for Excellence in Developmental Disabilities², Zilka Neurogenic Institute³

Motivation & Introduction

Prosody-Intonation, volume, duration, and rate of speech suprasegmental aspects have communicative function segmental aspects relate to voice quality

0.431

The USC CARE Corpus

Category	Count/Statistic		
Age (years)	mean: 9.8, std. dev.: 2.5, range: 5.8-14.7		
Gender	male: 22, female: 6		
Native language	Spanish: 8, English: 9, Sp.&Eng.: 4, unk: 7		
Ethnicity	Hispanic/Latino: 20, White/White+Other: 8		

Atypical prosody is often reported in children with Autism Spectrum **Disorders (ASD)**, but heterogeneous and qualitatively described

> "slow, rapid, jerky and irregular in rhythm, odd intonation or inappropriate pitch and stress, markedly flat and toneless, or consistently abnormal volume"

We investigate various word- and phonetic- level spontaneous speech features to quantify the *qualitatively described* atypical prosody

Additionally, we find the *psychologist's* acoustic-prosodic features inform their perception of the child's behavior

ADOS module #3:28 ADOS diagnosis autism: 17, ASD: 5, below ADOS cutoffs: 6

Acoustic-Prosodic Features

25 features (functionals on feature contours) per person, per session

Intonation and Volume (turn-end prosody) (12 functionals): 2nd-order polynomial (intercept, slope, and curvature) of pitch and intensity

Rate (9 functionals): Syllabic speaking rate, vowel and consonant duration

Voice Quality (4 functionals): Jitter and Shimmer- peak-to-peak variations in pitch period and amplitude

Analysis of Acoustic-Prosodic Features

Child's Acoustic-Prosodic Features

Spearman's rank correlation coefficients (p<0.05)

	Code Label				
	Atyp.	Comm.	Soc.Int.	C&SI	
	Pros.	Total	Total	Total	
Child's Acoustic-Prosodic Features					
f0_slope μ	-0.45	-0.57	-0.50	-0.56	
f0_curve μ		-0.46	-0.41	-0.45	
Int_intercept σ		+0.39			
Jitter median	+0.42	+0.39	+0.41	+0.41	
Jitter <i>iqr</i>	+0.55	+0.47	+0.48	+0.50	
syl_SR-nonBoundary $q_{0.9}$		-0.41			

Both participant's features correlate with the child's rated atypicality

Child features- suggest 'monotonic' speech, variable volume, atypical voice quality, and slower rate of speech.

Psychologist features- suggest psychologist's

Psychologist's Acoustic-Prosodic Features

Spearman's rank correlation coefficients (p<0.05)

	Code Label						
	Atyp.	Comm.	Soc.Int.	C&SI			
	Pros.	Total	Total	Total			
Psychologist's Acoustic-Prosodic Features							
f0_slope μ		+0.38					
f0_intercept σ	+0.44	+0.62	+0.40	+0.47			
f0_slope σ		+0.47					
f0_curve σ	+0.42	+0.58		+0.39			
Jitter median	+0.53	+0.77	+0.58	+0.69			
Jitter <i>iqr</i>	+0.46	+0.57	+0.39	+0.47			
syl_SR-Boundary $q_{0.9}$		+0.46					
syl_SR-nonBoundary $q_{0.9}$			-0.48	-0.43			
vowel_dur σ		+0.59					

Ming Hsieh Department of Electrical Engineering

speech behavior changes depending on her perception of the child (e.g., higher jitter and generally slower speech rate).

Discussion & Future Work		
The results suggest the psychologist is attuning to the child's behavioral cues, deliberately or spontaneously.		
Future work		
Model the temporal patterning of interaction		
Is atypical prosody global (thin-slices) or local (bouts)?		
Model strategies of the psychologist		
Collect normative data from typically developing children to model non-linear variability in speech prosody		