Carbon Nanotube Electronics

Ming Hsieh Department of Electrical Engineering Research Festival

Yuchi Che Ph.D. Candidate

Advisor: Chongwu Zhou

Dept. of Electrical Engineering University of Southern California

🖗 Carbon Nanotubes – Superior Electronic Properties 🕻

3D – graphite

2D – graphene

1D – Carbon nanotube

	Si	GaAs	InGaAs*	GaN	CNT	Graphene
<i>E</i> _G , eV	1.1	1.4	0.7	3.4	0.4 – 1	0
<i>E</i> _{BR} , 10 ⁵ V/cm	5.7	6.4	4	40	-	-
μ_0 , cm²/Vs	710	4700	7000	680	>10,000	>10,000
v _{peak} , 10 ⁷ cm/s	1	2	2.5-3	2.5	2 - 4	2 – 4
v _{sat} , 10 ⁷ cm/s	1	0.8	0.7	1.5-2	2 - 4	2 - 4
<i>к</i> , W/cm-К	1.3	0.5	0.05	1.2**	-	-

Very high carrier mobility (>10,000 cm²/Vs at room temperature) for high speed transistor

High carrier velocity: saturation velocity ~4x10⁷ cm/s

semiconducting nanotubes

Remove metallic nanotubes

Goal:

Digital Electronics

My innovation:

Selective synthesis of predominant semiconducting nanotubes

Radio frequency Electronics

<u>My innovation:</u> High performance carbon nanotube RF transistors and circuits

-aligned source/dra

Synthesis of Predominantly Semiconducting Nanotubes

Use of isopropanol (IPA) as the carbon source

Yuchi Che, et al, ACS Nano, Vol.6,7454, 2012.

Radio Frequency (RF) electronics

Nature Nanotech, Vol 4, 2009

Yuchi Che, et al, ACS Nano, Vol.6,7454, 2012.

Carbon nanotube RF transistor

Cut-off frequency of 88 GHz and maximum Power Gain frequency of 37 GHz are achieved.

Yuchi Che, et al, ACS Nano, Vol.6,7454, 2012.

CNT-based RF Circuit

Frequency doubler: Offer a new degree of freedom in designing frequency multiplier chains

Mixer: Shift a signal from one frequency to another, keeping the properties of the initial signal.

RF: 1 GHz LO: 1.2 GHz IF: 0.2 GHz Conversion gain: <u>-24.5 dB</u>

Yuchi Che, et al, ACS Nano, Vol.7, 4343, 2013.

Future plan: Hybrid circuit

http://nanolab.usc.edu/