Ming Hsieh Department of Electrical Engineering

School of Engineering

Capacity and Power Allocation for Degraded Decode-and-Forward Relay Channel with ISI

Chien-Lun Chen, Urbashi Mitra Electrical Engineering/Communications

Degraded Relay Channel

•Definition:

A Relay Channel is said to be degraded if $p(y, y_1 | x, x_1)$ can be written in the form $p(y, y_1 | x, x_1) = p(y_1 | x, x_1) p(y | y_1, x_1)$ •Capacity:

From the definition, since y depends on x only through y_1 and x_1 , we can define

 $X = \sqrt{(1-\alpha)P_S / P_R X_1 + X_{10}}$ and therefore the capacity for a degraded channel

Degraded Relay Channel with ISI

•Capacity

The capacity region of circular Gaussian relay channel (CGR C) and linear Gaussian relay channel (LGRC) is the same when the input block size *N* goes to infinity.

•By DFT, a multi-path relay channel can be decomposed as a set of *N* parallel and independent scalar relay channels and is optimal for the computation of DF rate.

Decomposition

Power Allocation for Parallel Channels

•How?

- To appropriately assign power on the subbands that can provide higher rates.
- To design codes with rates approaching capacity of multi-path relay channel
- 1. Find the capacity of each sub-band under equal power allocation.
- $C_n^* = \max_{0 \le \alpha_n \le 1} \min\{C_{1,n}, C_{2,n}\}$ 2. Find the corresponding SNR γ_n^* by $C_n^* = 1/2\log(1+\gamma_n^*),$
- 3. Equivalent to power allocation issue on OFDM $P_{S,n} = P_{R,n} = (v_t - 1/\gamma_n^*)^+$

Simulation Results

NOTE:

Since H_{SD} is degraded, when H_{SR} is in a deep fade, capacities of both paths are low and thus zero power is assigned.

Ming Hsieh Department of Electrical Engineering