Software-Defined Radio (SDR) Receiver Using Sample Domain Signal Processing (SDSP)

Run Chen and Hossein Hashemi
Ming Hsieh Department of Electrical Engineering

Research Objective
Software Defined Radio (SDR) Transceiver

- Tunable Analog Front-end Module (AFEM)
- CMOS Low-Power ADC
- CMOS SDR RX Modulator
- Power Amplifier
- Back-end DSP

Proposed Architecture

- Sample Domain Signal Processing (SDSP)
- Wideband Frequency Synthesizer
- Key Features:
 - Wide radio frequency coverage
 - Large interference suppression by Gm + SDSP
 - Tunable AFEM specifications relaxed
 - Input impedance matching at desired frequency
 - BV/LV gain programmable by software
 - Harmonic rejection achieved through SDSP
 - Image rejection achieved through SDSP
 - Performance improvement with technology scaling

Integrated Circuit Implementation

- RF Front-end Gm Stage
- SDSP
- Design Summary:
 - Achieved by Simulation:
 - Technology: 65nm LP CMOS
 - Frequency range: 6.5 GHz – 3 GHz
 - Tuning resolution: Continuous
 - Input SW: 100
 - NF: 6.5 dB
 - IIP3 (dBm): 5 dBm
 - CMRR: -20 dB
 - CHRR: 2.7 dBm
 - VDD: 1.5 V
 - RF chain power consumption: 146 mW
 - Clock power consumption: 106 mW – 440 mW
 - Total power consumption: 252 mW – 166 mW
 - VCM

Simulation Result Highlight

- Bandwidth
- Linearity
- Harmonic rejection
- Power consumption

SDSP Concept

- S-phase Non-overlapping clock (P1 - P8) is required to achieve both image rejection and harmonic rejection

SDSP Clock Generator

- PLL
- Charge Pump
- Voltage Controlled Oscillator (VCO)
- Divider (N)

Chip Layout

- High-dynamic range SDR TX design based on SDSP
- Design the reconfigurable front-end module for SDR transceiver

Conclusion

- Proposed a solution for SDR RX based on SDSP
- Support various wireless communication bands from 0.5-3 GHz
- Decent frequency selectivity and high dynamic range, robust to interference
- Decent harmonic rejection and image rejection
- Gain/BW fully programmable
- Good for technology scaling down

Future Work

- Study the fundamental limits of SDR system power consumption
- Study the fundamental limits of SDR system power consumption
- Study the fundamental limits of SDR system power consumption
- Design the reconfigurable front-end module for SDR transceiver

Contact: Run Chen (213)-740-4422, runchen@usc.edu
Sponsored by ONR
April, 2012