Optimizing Emission in Nanorod Arrays through Quasi-Aperiodic Inverse Design

P. Duke Anderson, Michelle L. Povinelli

Ming Hsieh Department of Electrical Engineering, Los Angeles, CA 90089, USA

Motivation Nanostructuring to improve LED brightness MQWs. In_xGa_{1-x}N/GaN core-shell nanorod arrays **MOCVD** Growth Wide wavelength tunability Enhanced active area (fixed chip size) Avoid piezoelectric fields Periodic emitting structure affects Extraction efficiency Yeh et al., Appl. Phys. Lett. 100 Emission rate: local density of states

Quasi-Aperiodic Array

Controlling uncoupled resonances → break mirror symmetries

Structure

Forward vs. Inverse Methods:

Forward simulation

- Requires N simulations
- Large, finite-size lattice
- PML boundary conditions

Inverse simulation

- Requires one simulation
- Single unit cell
- Periodic boundary conditions

Random Walk Algorithm:

1. Randomly move rod

2. Calculate FOM

Optimized geometry:

High |E|2 within QW

Forward emission calculations:

Integrated Extracted Power Enhancement ≈ 1.5X

Conclusions

Periodic core-shell nanorod arrays enhance emission

- $-\Gamma$ -point mode with ideal $|E|^2$ profile
- Extracted power 25X larger than infilled slab

Quasi-aperiodic arrays can further enhance emission

- Broadens resonance, preserves integrated TDP
- Achieves perfect light extraction
- Extracted power 1.5X larger than periodic array

Anderson et al., Appl. Phys. A DOI 10.1007/s00339-014-8602-1