# Online Learning Algorithms for Network Optimization with Unknown Variables

#### Yi Gai Advisor: Bhaskar Krishnamachari

Ming Hsieh Department of Electrical Engineering University of Southern California, Los Angeles, CA 90089

> ygai@usc.edu http://www-scf.usc.edu/~ygai/

> > April 20, 2012

# Summary of My PhD Research (1)

Bio: BS'05, Tsinghua Univ. -> MS'07, Tsinghua Univ. -> Join ANRG, USC in Fall 2007

#### A. Online Learning Algorithms:

- MAB with Linear Rewards
  - i.i.d. and Markovian formulation
  - DySPAN'10, IEEE/ACM Trans. Networking, Globecom'11, Machine Learning (under submission), Infocom'12 (mini-conf), SECON'12
  - joint work with Bhaskar Krishnamachari, Rahul Jain, Mingyan Liu.
- ② Learning in Decentralized Settings
  - Globecom'11
  - joint work with Bhaskar Krishnamachari
- Icearning with Non-Linear Rewards
  - ITA'12 (under submission)
  - joint work with Bhaskar Krishnamachari
- On-Bayesian Restless Multi-Armed Bandits
  - ICASSP'11, IEEE Trans. Information Theory (under submission), Allerton'11
  - joint work with Bhaskar Krishnamachari, Qing Zhao, Wenhan Dai, Naumaan Nayyar.

# Summary of My PhD Research (2)

#### B. Network Game Theory, Algorithmic Game Theory and Economics

Incentive Mechanisms for M/M/1 Queueing Game

- Infocom'11, IEEE Trans. Automatic Control (under submission)
- joint work with Bhaskar Krishnamachari, Hua Liu.
- Inding Games
  - EC'12 (under submission)
  - joint work with Bhaskar Krishnamachari, Amotz Bar-Noy, Matthew Johnson, George Rabanca

#### C. Wireless Networks and Communications

- In the Saturation Throughput Region of p-Persistent CSMA
  - ITA'11
  - joint work with Bhaskar Krishnamachari, Shankar Ganesan.
- Subcarrier Allocation in Multiuser OFDM Systems
  - WCNC'10
  - joint work with Bhaskar Krishnamachari, Pai-Han Huang, Ashwin Sridharan.

### **Today's focus: Online Learning Algorithms**

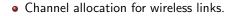
Online Learning Algorithms: Motivating Example 1

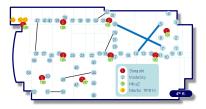
• Finding the lowest expected delay path through traffic using prior observations.



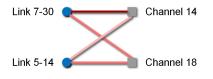
A sample path from Google Maps.

## Motivating Example 2

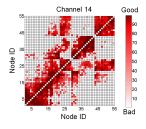




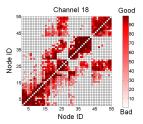
The TutorNet testbed at USC.



Bipartite link channel allocation graph.



Link qualities on channel 14.



Link qualities on channel 18.

### Online Learning for Stochastic Network Optimization

- Common theme: find an optimal network structure (best path / matching), assuming the underlying edge weights are unknown random variables.
- Problem formulation:

$$\max \quad \mathbb{E}[\sum_{\tau=1}^{t} f(\mathbf{a}(\tau), \mathbf{X}(\tau))]$$
  
s.t.  $\mathbf{a}(\tau) \in \mathcal{F}$  (1)

where **X** are unknown random variables;  $\mathbf{a}(\tau)$  is action at time  $\tau$ ;  $\mathcal{F}$  is a finite set.

#### Our focus on this topic

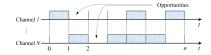
• Develop online learning algorithms for stochastic network optimization.

# Multi-Armed Bandits (MAB)

- Multi-armed bandit (MAB) problems provide a fundamental approach to learning under stochastic rewards.
- It has rich applications in networking contexts

#### Trade-off

Exploration vs Exploitation



#### Cognitive Radio Networks [e.g. Anandkumar et al.'10]



Internet advertising [e.g. Pandey et al.'07]

## Summary of Proposed Algorithms

| Problems                                                            | Random Process     | Proposed Algorithms                         | Regret Bound*                       |
|---------------------------------------------------------------------|--------------------|---------------------------------------------|-------------------------------------|
| MAB with Linear Rewards                                             | i.i.d.             | LLR                                         | $O(N^4 \ln t)$                      |
|                                                                     |                    | LLR-K                                       | $O(N^4 \ln t)$                      |
|                                                                     |                    | LLR with a $\beta$ -approximation algorithm | $O(N^4 \ln t)^{\natural}$           |
| MAB with Linear Rewards                                             | Rested Markovian   | MLMR                                        | O(N <sup>4</sup> In t) <sup>♯</sup> |
|                                                                     | Rested Markovian   |                                             | $O(L(t)N^4 \ln t)^{\dagger}$        |
| MAB with Linear Rewards                                             | Restless Markovian | CLRMR                                       | $O(N^4 \ln t)^{\sharp}$             |
|                                                                     | Restless Markovian |                                             | $O(L(t)N^4 \ln t)^{\dagger}$        |
| Distributed Learning with Prioritization                            | i.i.d.             | DLP                                         | $O(M(N + M) \ln t)$                 |
| Distributed Learning with Fairness                                  | i.i.d.             | DLF                                         | $O(M(N - M) \ln t)$                 |
| Selective learning of the K-th largest arm                          | i.i.d.             | SL(K)                                       | $O(N \ln t)$                        |
| MAB with Non-Linear Rewards                                         | i.i.d.             | CWF1                                        | $O(N^4 \ln t)$                      |
|                                                                     |                    | CWF2                                        | $O(\frac{N^2}{B(N)^2} \ln t)$       |
| Non-Bayesian Restless MAB<br>with identical transition matrices     | Restless Markovian | SPUDC                                       | $O(L(t) \ln t)^{\dagger}$           |
| Non-Bayesian Restless MAB<br>with non-identical transition matrices | Restless Markovian | R2PC                                        | $O(L(t) \ln t)^{\dagger}$           |

Notes:

\*. Upper bounds on regret are achieved uniformly.

β-approximation regret.

#. weak regret; an upper bound on L is known.

 $\dagger$ . L(t) is any arbitrarily slowly diverging non-decreasing sequence.

### Thanks!

#### ygai@usc.edu