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Experimental Setup. The 
postsynaptic potential (PSPs) 
obtained from whole- cell 
patch- clamp recordings. CA1 
pyramidal neurons were  
stimulated with  random interval 
trains  to mimic the spiking 
behavior observed in CA3 
hippocampal neurons. The 
mean stimulation frequency: 
2Hz. The stimulation intensity 
was adjusted so no action 
potentials were induced. The 
PSPs were recorded at the 
soma of the cell. 
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Laguerre Expansion of Volterra Kernel (LEV) model.
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Low-Pass and All-Pass Filter Implementations and Transfer Functions
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LEV Circuit Implementation 
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Ideal LEV PSP Approximation
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Estimation Error

Input: Train of pulses with 200µs duration and amplitude of 80mV applied 
differentially.  The ideal second order LEV approximation is shown in the third trace. 
The bottom graph shows the absolute value of the difference between the recording 
and the circuit output. 

• The rms error between the signals generated by the circuit and ideal LFs is less 
than 5%. 
• The normalized mean square error between circuit estimation and data is 14.98%. 
• The total power consumption is 5.3nW.
• Subthreshold Gilbert Cells implement the Multipliers in the LEV model
• A modified version of a subthreshold Gilbert cell is also used to implement the 
weighting blocks
• Each cell can be individually calibrated to compensate for mismatch and process 
variation, to change the time constants or weighting coefficients. 
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Hardware Implementation of the LEV Hardware Implementation of the LEV 

k1 : first order Volterra Kernel
k2 : second order Volterra Kernel (nonlinear component)

It can be shown that ln(t) is the impulse 
response of a linear system with transfer 
function 
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AbstractAbstract
The right level of abstraction for a model mimicking a neural function is often 
difficult to determine. There are trade-offs between capturing biological 
complexities on one hand and the scalability and efficiency of the model on 
the other. In this work, we describe a nonlinear Laguerre-Volterra model of 
the synaptic temporal integration of input spikes to postsynaptic potentials. 
This model is then efficiently implemented using analog subthreshold circuits 
and can serve as a foundation for future large-scale hardware systems that 
can emulate multi-input multi-output (MIMO) spike transformations in 
populations of neurons. The normalized mean square error in estimating real 
data using the circuit implementation of this model is less than 15%. The 
model components are modular and its parameters are adjustable. The total 
power consumption of this nonlinear Laguerre-Volterra system is 
approximately 5nW. 


