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Introduction

of m arrivals to the kth node is given by

Vk(m) :=
m�

i=1

νk
i .

By assumption the nodes in the network are non-idling, and Vk(0) = 0. Now, the instantaneous workload at time

t, measured in units of time, at node k is a function of the cumulative service time requirement of all arrivals at

the node k, including both arrivals from the external stream and from internal routing, and the amount of time the

server has been busy up to the instant of interest. Thus, we have

Zk(t) := Vk(Ak(t))−Bk(t).

The vector virtual waiting time process is given by W(t) = Z(t)−t−, where t− = ((t−Ts,1)1{t≤Ts,1}, . . . , (t−

Ts,K)1{t≤Ts,K})
�
. Thus the virtual waiting time of an arrival at time t to the k�th node is given by,

Wk(t) := Zk(t)− (t− Ts,k)1{t≤Ts,k}.

The extra term (t−Ts,k)1{t≤Ts,k} appears in the definition of the virtual waiting time process because a job arriving

before Ts,k would have to wait (t− Ts,k) units of time before service starts.

III. THE QUEUEING NETWORK MODEL: FLUID LIMIT
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Fig. 1. A single population of homogeneous users arriving at a K-node parallel queueing network.

We consider a queueing network with K single server FIFO queues in parallel and a single stream of homogeneous

arrivals as shown in Figure 1. The ith queue starts service at some fixed time Ts,i and offers mean service rate

µi. We assume every arrival is served independently of the others and that the servers are non-preemptive and

non-idling. Let (Ω,F , P ) be a probability space with respect to which the requisite random variables are defined

and DK := DK [−T0,∞) be the space of K-dimensional cadlag processes [10], [11].

A. Network Primitives

The general approach to developing the approximations is to first develop the fluid approximations to the network

primitives. Next, by scaling up the network parameters pathwise, one can easily develop the fluid approximation to
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• Consider arriving at a concert, where the gates open at a fixed time. 
Should one arrive early and be the first in line? Or should one arrive 
later but risk missing out on the concert? On arrival, which gate should 
one enter?

• Standard queueing models do not capture this behavior. So, what is 
the arrival process in this case? How does one model this behavior?

Two parts to the model:

• A model of the parallel queueing network

• Modeling the strategic arrival behavior as a game

• The arrival process is unknown a priori and is determined in 
equilibrium. The service capacity is modeled as a renewal process, with 
known mean service rate

• We call this a ?/GI/1 queue, and develop pathwise fluid and diffusion 
approximations to the queue length and virtual waiting time processes.

• Consider a parallel network of K ?/GI/1 queues, with heterogeneous 
service rates and start times.  
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Q̄(t) = X̄(t) + sup
−T0≤s≤t

{−X̄(s)}+

W̄(t) = MQ̄(t)− ts,−(t)

M = diag
�

1
µ1

, . . . ,
1

µK

�
ts,−(t) =





(t− Ts,1)1{t≤Ts,1}
(t− Ts,2)1{t≤Ts,2}

...
(t− Ts,K)1{t≤Ts,K}





Theorem: The fluid queue length state of the network is

X̄(t) = F (t)





p1

p2
...

pK




−





µ1(t− Ts,1)1{t≥Ts,1}
µ2(t− Ts,2)1{t≥Ts,2}

...
µK(t− Ts,K)1{t≥Ts,K}





The virtual waiting time snapshot process is:

Single Population of Arriving Users

Theorem: The unique equilibrium arrival profile is 

                         , where

  

and 

F ∗ = (F ∗
1 , . . . , F ∗

K)

T =
1 +

�K
k=1 µkTs,K�K
k=1 µk

, −T0,l = (1− 1
γ

)T +
Ts,l

γ
,

pl =
µl�K

k=1 µk

(1−
�

k �=l

µl(Ts,l − Ts,k)).

F ∗
l (t) =

pl × (t + T0,l)
(T + T0,l)

∀t ∈ [−T0,l, T ],

Theorem: The Price of Anarchy of the equilibrium solution is 
bounded above by 2.

T =
1+

�K
k=1 µkTs,k�K
k=1 µk

and −T0,l = (1− 1
γ
)T +

Ts,l

γ
, and the equilibrium routing probabilities are given by

p∗0,l =
µl�K

k=1 µk
(1−

�
k �=l µl(Ts,l −Ts,k)).

FK

−T0,1 0 −T0,2 t

F1

p0,1

p0,2

p0,K

F (t)

T−T0,K

...

F2

Figure 1 Equilibrium arrival profile of a single population to a K-queue parallel queueing network.

Proof: Note that the cost function is unbounded as t goes to ±∞. Thus, at equilibrium the arrival

profile must have bounded support. Let the support of the arrival profile to queue l be [−T0,l, T ].

Now, at equilibrium, the cost of arriving at queue l is the same at any time in this arrival interval.

Thus, Cl(T ) =Cl(−T0,l), from which we get

p0,l = γµl(T +T0,l). (7)

Next, the equilibrium expected cost of arrival is the same at any queue and at any time in their

respective arrival intervals. From Lemma 1, we know that the time of last arrival at any queue is

the same for all queues. Thus, Cl(T ) = Ck(T ), for any l, k, and using
�

l �=k p0,l = 1− p0,k, we get

�
l �=k µl(

p0,k
µk

+ Ts,k − Ts,l) = 1− p0,k, rearranging which, we get that the equilibrium probability of

routing to queue k upon arrival is p0,k =
µk�K
l=1 µl

(1−
�

l �=k µk(Ts,k −Ts,l)).

Now, from Lemma 2, we have that µl(T − Ts,k) = p0,k since the population size has

been normalized to 1. Substituting for p0,k, we get T =
1+

�K
k=1 µkTs,k�K
k=1 µk

. Now, it follows

from equation (7) that −T0,l = T − p0,l
γµl

. Substituting for T and p0,l we get −T0,l =

1�K
k=1 µk

�
(1− 1

γ
)(1+

�K
k=1 µkTs,k)+

Ts,l

γ

�K
k=1 µk

�
which simplifies to −T0,l = (1− 1

γ
)T +

Ts,l

γ
.

Finally, equating the cost of arrival at queue l at any time t with that at T0,l gives (α+β)
F∗
l (t)

µl
−

αt= αT0,l, which yields F ∗
l (t) = µlγ(t+T0,l) =

p0,l(t+T0,l)

T+T0,l
, an equilibrium arrival profile at queue l.
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Multiple Populations of Arriving Users
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Figure 3 Two parallel queues, and two arriving populations with γ1 < γ2. Population 1 arrives over [−T0,1, T1]

at queue 1, and over [−T0,2, T1] at queue 2. However, population 1 need not be served completely until

time τ1 at either queue. Population 2 arrives over [T1, T2] and is completely served at time T2.

Theorem 6. Suppose γi < γi+1, ∀i and Ts,k < Ts,k+1, ∀k. Then, the unique equilibrium arrival

profile for population i at queue k ∈ Jj, j < i, is dF ∗
i,k(t) = γiµk, ∀t ∈ [Ti−1, Ti], and at queue

l ∈ Ji is dF ∗
i,l(t) = γiµl ∀t ∈ [−T0,l, Ti] where TN = 1�N

i=1
�

k∈Ji
µk

�
N +

�N
i=1

�
k∈Ji

µkTs,k

�
, and

Ti−1 = Ti −
pi,k
γiµk

for i= 1, · · · ,N − 1, k ∈ Jj and j < i. For l ∈ Ji, the arrival interval is [−T0,l, Ti],

where −T0,l = Ti −
pi,l
γiµl

.

Furthermore, equilibrium routing probability for l ∈ Ji, i≥ 1 is

pi,l =
µl�i

j=1

�
k∈Jj

µk

�
i−

i�

j=1

�

k∈Jj

µk(Ts,l −Ts,k)

�
, (9)

and for k ∈ Jj, j < i, and i≥ 2 is

pi,k =
µk�i

j=1

�
k∈Jj

µk

�
1−

�

l∈Ji

µl

µk
(
i−1�

q=j

pq,k)−
�

l∈Ji

µl(Ts,k −Tl)

�
. (10)

Proof: Note that population i is served by queues Jl, l ≤ i. The expected cost for a population i

user to arrive at queue k ∈Ji is Ci,k(t) = (αi +βi)Wk(t)+βit for t∈ [Ti−1, Ti] for k ∈ Jl, l < i , and

for t∈ [−T0,ki, Ti] for k ∈ Ji. Recall that, Fk(t) =
�N

j=iFj,k(t), where Fi,k(t) has support [−T0,ki, Ti]

15

f1,2(t)

0−T0,1 T1 τ1

−T0,2 T1 τ1 T2

T2

Ts,2

t

t

F1(t)
p2,1

p1,1

F2(t)

p2,2

p1,2

Q1(t)

Q2(t)

f2,1(t)

f2,2(t)

f1,1(t)

Figure 3 Two parallel queues, and two arriving populations with γ1 < γ2. Population 1 arrives over [−T0,1, T1]

at queue 1, and over [−T0,2, T1] at queue 2. However, population 1 need not be served completely until

time τ1 at either queue. Population 2 arrives over [T1, T2] and is completely served at time T2.

Theorem 6. Suppose γi < γi+1, ∀i and Ts,k < Ts,k+1, ∀k. Then, the unique equilibrium arrival

profile for population i at queue k ∈ Jj, j < i, is dF ∗
i,k(t) = γiµk, ∀t ∈ [Ti−1, Ti], and at queue

l ∈ Ji is dF ∗
i,l(t) = γiµl ∀t ∈ [−T0,l, Ti] where TN = 1�N

i=1
�

k∈Ji
µk

�
N +

�N
i=1

�
k∈Ji

µkTs,k

�
, and

Ti−1 = Ti −
pi,k
γiµk

for i= 1, · · · ,N − 1, k ∈ Jj and j < i. For l ∈ Ji, the arrival interval is [−T0,l, Ti],

where −T0,l = Ti −
pi,l
γiµl

.

Furthermore, equilibrium routing probability for l ∈ Ji, i≥ 1 is

pi,l =
µl�i

j=1

�
k∈Jj

µk

�
i−

i�

j=1

�

k∈Jj

µk(Ts,l −Ts,k)

�
, (9)

and for k ∈ Jj, j < i, and i≥ 2 is

pi,k =
µk�i

j=1

�
k∈Jj

µk

�
1−

�

l∈Ji

µl

µk
(
i−1�

q=j

pq,k)−
�

l∈Ji

µl(Ts,k −Tl)

�
. (10)

Proof: Note that population i is served by queues Jl, l ≤ i. The expected cost for a population i

user to arrive at queue k ∈Ji is Ci,k(t) = (αi +βi)Wk(t)+βit for t∈ [Ti−1, Ti] for k ∈ Jl, l < i , and

for t∈ [−T0,ki, Ti] for k ∈ Ji. Recall that, Fk(t) =
�N

j=iFj,k(t), where Fi,k(t) has support [−T0,ki, Ti]

15

Theorem: Suppose the queues offer the same service rate, and 
start at uniformly staggered times (i.e., queue k starts at time (k-1)
τ), then the Price of Anarchy of the equilibrium is bounded above 
by 2.

Theorem: Consider N distinct populations, and assume γ1 ≤ γ2 ≤ ... 
γN. Then, at equilibrium population i users arrive before 
population j users, for i < j. Furthermore, the arrivals are over 
disjoint intervals, without any gaps.

Conclusion
•We proved the existence and uniqueness of a Nash equilibrium solution 
to a large population game of strategic arrivals to a parallel network of 
queues. 

•We showed that the arrival distribution, both in the case of a single 
population and multiple arriving populations, is a uniform distribution 
function

•The equilibrium solution will be furthered refined in a Functional Central 
Limit Theorem setting in future work
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Network of ?/GI/1 Queues

Model of Strategic Arrivals

• Each arriving user chooses a mixed strategy over a set of possible arrival 
times, i.e., a probability distribution function, and a routing probability

• The Nash equilibrium strategy minimizes a cost,             

given the strategies of other arriving users, compared to other possible 
strategies

-          characterizes the population of arriving users, and we define

 

• We study the game in the fluid/large population setting, and consider a 
non-atomic game formulation

C(t) = (α + β)W (t) + βt,

(α,β)
γ =

α

(α + β)
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