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Continuous measurements

Quantum dynamics are reversible, deterministic and continuous.
However, quantum measurements are irreversible,
non-deterministic, and discontinuous. Can we describe both
dynamics and measurement continuously?

Continuous decompositions as random walks

In [OB05] it was shown that any quantum measurement {M1,M2}
can be decomposed into a 1-dimensional continuous stochastic
process

In [FB14] we’ve shown that any qubit-probe interacting in a fixed
way with the system being measured could only decompose
measurements of the form

M1 = U1 (αΠS + βΠS⊥) V

M2 = U2

(√
1− α2ΠS +

√
1− β2ΠS⊥

)
V

Linear Hamiltonian control terms

New question: What can be done with a qubit-probe and a tunable
interaction?

In the above circuit we define

Probe state |σ(x)〉 = |0〉

Detector states 〈φ±| = 〈±|

Tunable interaction HPS = YP ⊗ ε̂(x)

Linear control terms ε̂(x) =

d∑
i=0

pi(x)Hi

Algebra of the control set F = span {H1, . . . ,Hd}

Step operators M±(x) =
1√
2
1 + iδ〈±|HPS(x)|0〉

Total walk operator M(x) ∝ lim
δ→0

b|x|/δc∏
j=1

M±(±jδ)

M(x) =

D∑
i=1

Hi

Endpoint operators M1,2 = lim
x→X1,2

M(x)

The above must satisfy the following equations

Reversibility equation M∓(x± δ)M±(x) ∝ 1

Operator propagation ∂xM(x) = −ε̂(x)M(x)

Quadratic systems of ODEs

The reversibiliy equation and the operator propagation equation can
be rewritten as quadratic systems of ODEs

Quadratic ODE sys. (1)
d∑

k=0

∂xpk(x)Hk =
1
2

d∑
i,j=0

pi(x)pj(x) {Hi,Hj}

Quadratic ODE sys. (2)
d∑

k=0

∂xak(x)Hk = −1
2

d∑
i,j=0

pi(x)aj(x)HiHj

Closure lemma

In order to satisfy the reversibility equation, the span of
active linear control terms F = span {Hi} must be closed
under anti-commutation.

Restriction algorithm

function RESTRICT(F)
if F◦2 = F then return F
else

S← BASIS
(
F◦2
)

for all s ∈ S do
s← RESTRICT (F\s)

end for
return S

end if
end function

Example

INPUT: F = {II,ZI, IZ,ZZ,XX}
F

S1

ZZ

ZI

S2

ZZ

IZ

S3

XX

RESTRICT(F) = {S1, S2, S3}
S1 = {II, IZ,XX}
S2 = {II,ZI,XX}
S3 = {II,ZI, IZ,ZZ} .

Extension algorithm

function EXTEND(F)
while F◦2 ⊃ F do

F ← BASIS
(
F◦2
)

end while
end function

Example

INPUT: F = {II,ZI, IZ,ZZ,XX}
EXTEND(F) =
{II,ZI, IZ,ZZ,XX,YY}

Discussion

I Using the control set F = span {I,X,Z} we can only decompose
measurements of the form achieved by qubit-probe feedback above.

I Quadratic ODE system (2) is completely determined by system (1) and
the initial condition M(0) = I.

I Quadratic ODE system (1) contains no orbits [KS95].
I If the span of controls F is also closed under

H1H2H3H4 + H4H3H2H1 ∈ F

then by the Cohn Reversible Theorem F is the Hermitian part of the Free
algebra generated by F (i.e.: the most general algebra). [McC04]
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