Ming-Hsieh Department of Electrical Engineering

Continuous decomposition of quantum measurements via Hamiltonian feedback

Jan Florjanczyk, Todd Brun Communication Sciences Institute

Continuous measurements

Quantum dynamics are reversible, deterministic and continuous. However, quantum measurements are irreversible, non-deterministic, and discontinuous. Can we describe both dynamics and measurement continuously?

Continuous decompositions as random walks

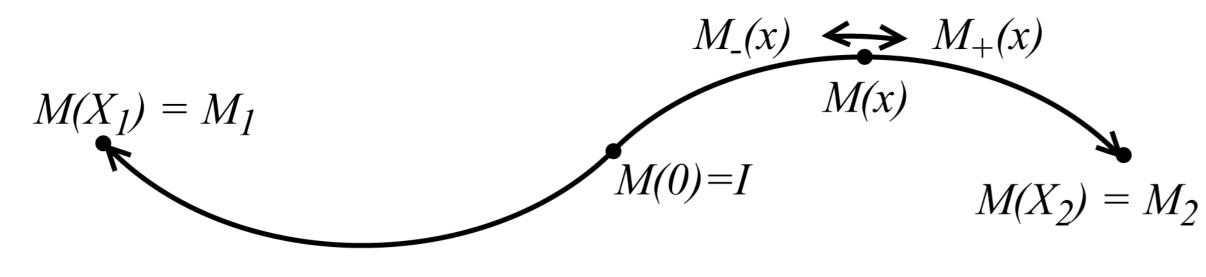
In [OB05] it was shown that any quantum measurement $\{M_1, M_2\}$ can be decomposed into a 1-dimensional continuous stochastic process

Quadratic systems of ODEs

The reversibility equation and the operator propagation equation can be rewritten as quadratic systems of ODEs

Quadratic ODE sys. (1) $\sum_{k=0}^{d} \partial_x p_k(x) H_k = \frac{1}{2} \sum_{i,j=0}^{d} p_i(x) p_j(x) \{H_i, H_j\}$ Quadratic ODE sys. (2) $\sum_{k=0}^{d} \partial_x a_k(x) H_k = -\frac{1}{2} \sum_{i,j=0}^{d} p_i(x) a_j(x) H_i H_j$

Closure lemma



In [FB14] we've shown that any qubit-probe interacting in a fixed way with the system being measured could only decompose measurements of the form

> $M_1 = U_1 \left(\alpha \Pi_S + \beta \Pi_{S^\perp} \right) V$ $M_2 = U_2 \left(\sqrt{1 - \alpha^2} \Pi_S + \sqrt{1 - \beta^2} \Pi_{S^\perp} \right) V$

Linear Hamiltonian control terms

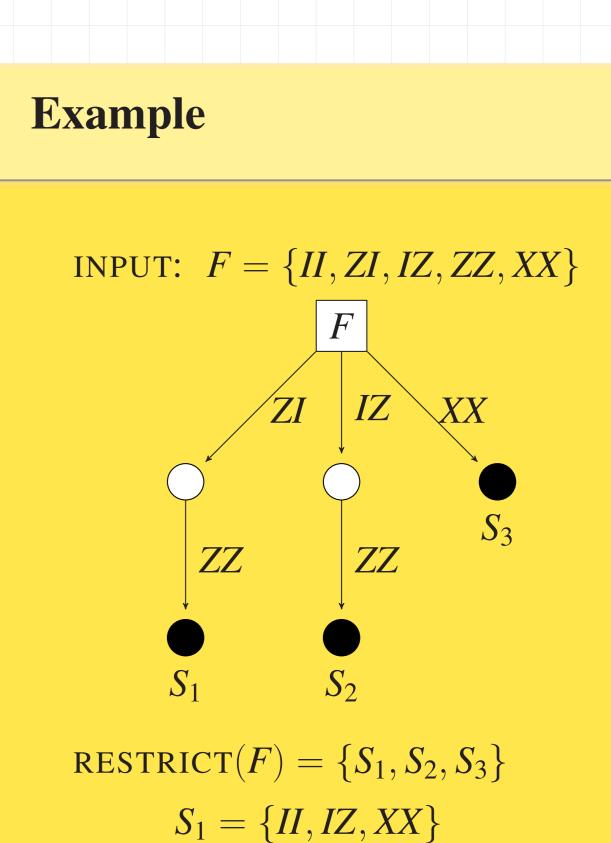
New question: What can be done with a qubit-probe and a tunable interaction?

 $x \pm \partial$

• • •

In order to satisfy the reversibility equation, the span of active linear control terms $F = \text{span} \{H_i\}$ must be closed under anti-commutation.

Example **Restriction algorithm function** RESTRICT(F) if $F^{\circ 2} = F$ then return *F* else $S \leftarrow \text{BASIS}(F^{\circ 2})$ for all $s \in S$ do $s \leftarrow \text{RESTRICT}(F \setminus s)$ end for ZZ return S end if end function



$\frac{ \sigma\rangle}{S} = \frac{\varphi}{S}$ In the above circuit we define	$e^{i\delta H_{PS}}$ $M_{\pm}(x) \psi\rangle$
Probe state	$ \sigma(x) angle = 0 angle$
Detector states	$\langle \phi^{\pm} = \langle \pm $
Tunable interaction	$H_{PS} = Y_P \otimes \hat{\varepsilon}(x)$
Linear control terms	$\hat{\varepsilon}(x) = \sum_{i=0}^{d} p_i(x) H_i$
Algebra of the control set	$F = \operatorname{span} \{H_1, \ldots, H_d\}$
Step operators	$M_{\pm}(x) = \frac{1}{\sqrt{2}}\mathbb{1} + i\delta\langle \pm H_{PS}(x) 0\rangle$
Total walk operator	$M(x) \propto \lim_{\delta \to 0} \prod M_{\pm}(\pm j\delta)$

Extension algorithm	Example
function EXTEND(F) while $F^{\circ 2} \supset F$ do $F \leftarrow BASIS(F^{\circ 2})$ end while end function	INPUT: $F = \{II, ZI, IZ, ZZ, XX\}$ EXTEND $(F) = \{II, ZI, IZ, ZZ, XX, YY\}$
Discussion	
	$\{I, X, Z\}$ we can only decompose eved by qubit-probe feedback above.

