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General and continuous quantum measurements
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I Finite-dimensional quantum systems are
represented by vectors in a Hilbert space |ψ〉

I Quantum states have continuous-time dynamics
given by the Schrödinger equation i~∂t|ψ〉 = H|ψ〉
where H is a Hamiltonian

I General quantum measurements can disturb
quantum states discontinuously and are defined by
a set of measurement operators {Mk} with∑

k M†kMk = I and

|ψ〉 prob. pk−→ Mk|ψ〉
pk

where pk = 〈ψ|M†kMk|ψ〉

Why study continuous quantum measurements?
Theoretical consideration Experimental considerations

Quantum dynamics are reversible, deterministic and
continuous. However, quantum measurements are
irreversible, non-deterministic, and discontinuous.

Can we describe measurements continuously but
allow for irreversible, non-deterministic outcomes?

Many quantum mechanical systems either have
naturally slow measurement times, or can only be
probed weakly. For example: microwave
cavities [BHL+90], homo- and heterodyne
measurements in quantum optics [YIM86, SSH+87]

Continuous decompositions as random walks

In [OB05] it was shown that any quantum measurement {M1,M2} can be
decomposed into a 1-dimensional continuous stochastic process

In this scheme successive weak measurements (steps) M±(x) are applied at
each time-step. These step operators are a function of the running total of
measurement outcomes, the pointer variable x. This process can be seen as a
1-d random walk on a curve in operator space. The total walk operator M(x)
describes the evolution which terminates at the desired operators M1 or M2.

Total walk operator M(x) ∝ lim
δ→0

b|x|/δc∏
j=1

M±(±jδ)

Endpoint operators M1,2 = lim
x→X1,2

M(x)

Reversibility equation M∓(x± δ)M±(x) ∝ 1

In [FB14] we’ve shown that any qubit-probe interacting in a fixed way with
the system being measured can only decompose measurements of the form

M1 = U1 (αΠS + βΠS⊥) V

M2 = U2

(√
1− α2ΠS +

√
1− β2ΠS⊥

)
V

Continuous decomposition with sequences of probes

New question: What can be done with a qubit-probe and a tunable interaction
Hamiltonian?

In the above circuit we define the probe state |σ(x)〉 = |0〉, the detector state
〈φ±| = 〈±| and the tunable interaction

HPS = YP ⊗ ε̂(x) ε̂(x) =

d∑
i=0

pi(x)Hi

Step operators M±(x) =
1√
2
1 + iδ〈±|HPS(x)|0〉

Total walk operator M(x) =

D∑
i=1

ai(x)Hi

In addition to the reversibility equation, we also introduce

Operator propagation ∂xM(x) = −ε̂(x)M(x)

Quadratic systems of ODEs over non-associative algebras

The reversibility equation and the operator propagation equation can be
rewritten as quadratic systems of ODEs

Quadratic ODE sys. (1)
d∑

k=0

∂xpk(x)Hk =
1
2

d∑
i,j=0

pi(x)pj(x) {Hi,Hj}

Quadratic ODE sys. (2)
d∑

k=0

∂xak(x)Hk = −1
2

d∑
i,j=0

pi(x)aj(x)HiHj

Closure lemma

In order to satisfy the reversibility equation, the span of linear control terms
F = span {Hi}

must be closed under anti-commutation
Hi ◦ Hj := HiHj + HjHi ∈ F ∀ Hi,Hj ∈ F.

Restriction algorithm

function RESTRICT(F)
if F◦2 = F then return F
else

S← BASIS
(
F◦2
)

for all s ∈ S do
s← RESTRICT (F\s)

end for
return S

end if
end function

In the example, we show the
branching calls to RESTRICT(F). At
each branch, we show which control
term is dropped. The algorithm
terminates on the filled nodes.

Example

INPUT: F = span {II,ZI, IZ,ZZ,XX}
F

S1

ZZ

ZI

S2

ZZ

IZ

S3

XX

RESTRICT(F) = {S1, S2, S3}
S1 = {II, IZ,XX}
S2 = {II,ZI,XX}
S3 = {II,ZI, IZ,ZZ} .

Extension algorithm

function EXTEND(F)
while F◦2 ⊃ F do

F ← BASIS
(
F◦2
)

end while
end function

Example

INPUT: F = span {II,ZI, IZ,ZZ,XX}
EXTEND(F) = span {II,ZI, IZ,ZZ,XX,YY}
In this example we see that the only
additional control term needed to complete
the algebra was YY

Discussion

I Using the control set F = span {I,X,Z} we can only decompose measurements
of the form achieved by qubit-probe feedback above.

I Quadratic ODE system (2) is completely determined by system (1) and the
initial condition M(0) = I.

I Quadratic ODE system (1) contains no orbits [KS95].
I The performance of RESTRICT(F) is sub-optimal, this is due to the freedom of

choice for BASIS(F◦2)
I If the span of controls F is also closed under

H1H2H3H4 + H4H3H2H1 ∈ F
then by the Cohn Reversible Theorem F is the Hermitian part of the Free algebra
generated by F (i.e.: the most general algebra). [McC04]
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