Algebraic structures of linearly controlled
Hamiltonians and continuous measurements

Jan Florjanczyk, Todd A. Brun
Communication Sciences Institute

Ming-Hsieh Department
of Electrical Engineering

USC Viterbi

School of Engineering

General and continuous quantum measurements

Quadratic systems of ODEs over non-associative algebras

» Finite-dimensional quantum systems are
represented by vectors in a Hilbert space |)

» Quantum states have continuous-time dynamics
given by the Schrodinger equation ihd;|v) = H )
where H 1s a Hamiltonian

» General quantum measurements can disturb
quantum states discontinuously and are defined by
a set of measurement operators {M;} with

S MM, = I and

‘w> prob. pi Mk|¢>
Pk

where p; = <¢‘M};Mk|¢>

Why study continuous quantum measurements?

Theoretical consideration

Quantum dynamics are reversible, deterministic and
continuous. However, quantum measurements are
irreversible, non-deterministic, and discontinuous.

Can we describe measurements continuously but
allow for 1rreversible, non-deterministic outcomes?

Experimental considerations

Many quantum mechanical systems either have
naturally slow measurement times, or can only be
probed weakly. For example: microwave

cavities [BHL90], homo- and heterodyne
measurements in quantum optics [YIM86, SSH87]

The reversibility equation and the operator propagation equation can be
rewritten as quadratic systems of ODEs

d d
1
Quadratic ODE sys. (1) E Owpi(x)Hy = ) E pi(x)pj(x) {H;, H;}

d d
1
Quadratic ODE sys. (2) E Ovar(x)Hy = 5 E pi(x)a;(x)H;H;

Continuous decompositions as random walks

In [OBO5] it was shown that any quantum measurement {M;, M,} can be

decomposed into a 1-dimensional continuous stochastic process Restriction algorithm Example

M (x) <> M. (x)

function RESTRICT(F) INPUT: F = span{ll,ZI,I1Z,7Z, XX }
if F°> = F then return F F
M(X5) = M, else
S < BASIS (F°?) ZI |1Z "\ XX
for all s € Sdo O Q ®

, , . s <— RESTRICT (F\s) S
In this scheme successive weak measurements (steps) M (x) are applied at i T 57 77 3

each time-step. These step operators are a function of the running total of return S | |
measurement outcomes, the pointer variable x. This process can be seen as a end if @ @
1-d random walk on a curve in operator space. The total walk operator M (x) end function Si S5
describes the evolution which terminates at the desired operators M; or M.

RESTRICT(F) = {81, S>, S3}

M(X;) = M;

M(0)=I

x| /6] In the example, we show the S {II 7 XX}
: : branching calls to RESTRICT(F). At L= 18585,
Total walk operator M (x) o< lim M. (+jo S _
b ( ) 6—0 H i( J ) each branch, we show which control S» = I, ZI, XX

=1 term 1s dropped. The algorithm Sy = L2112, ZZ} .

Endpoint operators terminates on the filled nodes.

Reversibility equation

Extension algorithm Example

In [FB14] we’ve shown that any qubit-probe interacting in a fixed way with
the system being measured can only decompose measurements of the form

M, = U, (OéHS—FﬁHSL)V
M2: U2 (\/1—&2HS—|— \/I—BZHSL) V

INPUT: F =span{ll,ZI,I1Z, 77, XX}
EXTEND(F) = span{ll,ZI I1Z,7ZZ , XX, YY'}
In this example we see that the only
additional control term needed to complete

function EXTEND(F)
while F°? O F do
F < BASIS (F°?)
end while
end function

the algebra was YY

Continuous decomposition with sequences of probes
Discussion

New question: What can be done with a qubit-probe and a tunable interaction
Hamiltonian?

X x::é

» Using the control set F' = span {/, X, Z} we can only decompose measurements
of the form achieved by qubit-probe teedback above.

» Quadratic ODE system (2) 1s completely determined by system (1) and the
initial condition M(0) = 1.

» Quadratic ODE system (1) contains no orbits [KS935].

» The performance of RESTRICT(F') is sub-optimal, this is due to the freedom of
choice for BASIS(F°?)

» If the span of controls F 1s also closed under
HHHH, + HiH;HH| € F

then by the Cohn Reversible Theorem F is the Hermitian part of the Free algebra
generated by F (1.e.: the most general algebra). [McCO04]

o) |- (2%
ci0Hps

) - Me(x)|)) -

In the above circuit we define the probe state |o(x)) = |0), the detector state
(¢*| = (4| and the tunable interaction

HpS — Yp X é(X) é(X) — ZPI(X)HI
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In addition to the reversibility equation, we also introduce

Operator propagation OM(x) = —€(x)M(x)




