
 Modified Architecture Simulation Results

Introduction

Not all threads/cores are needed all the time due to
- Control Flow Divergence

- Low parallelization of application itself

Can we use these Idle cores for another purpose?

Motivation

31 threads are wasted

during this amount of time

Why error detection is not used in GPGPU?
- For now, only memory components (RF,Cache,DRAM) are error protected

by ECC

- GPU, the ancestor of GPGPU doesn’t care about a few pixel errors that

are not perceivable by human eyes

But GP(General Purpose)GPU?
- General Purpose applications(i.e. Scientific/Banking calculations)

  Accuracy matters

- Hundreds of processing elements(cores) within a chip

  Likely to have H/W defects

 Goal : Building a Lightweight Error

 detection Method For GPGPU

Intra-Warp Checking

- For instructions i, required threads for i < SIMT lane capacity of system

Background

A batch of threads(WARP) run parallel

in lock-step way
- threads in a warp share a PC while

 accessing individual register files

Streaming Multiprocessors in GPGPU

support SIMT execution

Streaming Multiprocessor and SIMT cluster

GPGPU Architecture &

 SIMT execution

 - Each of multiple cores and register banks

 supports a SIMT lane

 - 4 128-bit wide register banks can feed 4

 cores effectively for 2 or 3R and 1W

 (i.e. MULADD) instructions

Inter-Warp Checking

- For instructions i, required threads for i = SIMT lane
capacity of system

- Dummy warp duplicates an actual warp execution

- Error detection by comparing the execution result of actual

and dummy warp

- Inactive threads within a warp
duplicate active threads
execution

- Error detection by comparing
the computation result of the
inactive and active threads

2-way Error Checking Method

Register Shuffling/Forwarding Unit is added
- Before and after pipeline execution stage

- Registers of active threads are forwarded to inactive threads

- Registers are forwarded after shuffling to dummy warps

- 128-bit comparators for verifying computation results

Error Coverage Timing Overhead

Simulation Setting
- Benchmarks : NVIDIA CUDA SDK, Parboil, and ERCBench

- Simulator : GPGPU-Sim

Results
- Average Error coverage is 97.61 %

- Average Timing overhead is 60.09 %

  Negligible when considering GPGPU’s 10x~100x speedup over CPU

Lightweight Error Detection for

GPGPU

Hyeran Jeon and Murali Annavaram

SCIP Research Group

