

Toward Separated Carbon Nanotube Based Large Scale Thin-Film CMOS Integrated Circuits

Jialu Zhang[†], Chuan Wang[†], Yue Fu, and Chongwu Zhou

Dept. of Electrical Engineering, University of Southern California, jialuzha@usc.edu

† These authors contributed equally to this work

Introduction

Flexible transparent thin-film transistors are important for applications such as flat-panel displays, e-papers and radio-frequency identification tags. However, the challenge is to find the right channel materials.

Materials	Advantages Challenges		
α-Si TFTs	- High Reliability - Presently used in LCDs	(a) High temperature processing; (b) Low mobility ($\mu \le 1 \text{ cm}^2/\text{V} \cdot \text{sec}$)	
Poly-Si TFTs	 High mobilities (~ 150 cm²/V·sec) Presently used in AMOLEDs 	(c) High temperature processing; not suitable for plastic substrates	
OTFTs	Low temperature processing:can use on plastic substrates	(d) Low mobilities ($\mu \le 1 \text{ cm}^2/\text{V} \cdot \text{sec}$) (e) Moisture sensitivity	

In-depth study of n-type SNTFTs

1.0

 $\oplus\oplus\oplus\oplus\oplus\oplus$

Si

1.5

eV)

Ti/Au

Mechanism of the Carrier conversion:

- Symmetric E-k relationship for holes and electrons
- The baking process in the vacuum chamber during ALD drives away O₂
- Positive fixed charge in the highk oxide layer introduced due to the deficiency of oxygen atoms will tune the energy band

ALD temperature dependence:

Carbon nanotubes: Significantly higher mobility, compatible with transparent flexible electronics, low temperature processing: low cost.

Challenges: 1.Coexistance of metallic and semiconducting nanotubes.

2. Carbon nanotubes are usually p-type doped in ambient air.

Experimental

Separation of metallic and semiconducting nanotubes:

Density gradient ultracentrifugation method

M. Arnold, M. Hersam et al., *Nature Nanotechnol.*, Vol. 1, 60, 2006

p-Type thin-film transistors:

@250 °C (compared with 150°C)

- ➤ H₂O vaporizes faster and is pumped away immediately
- Less oxygen atoms available during the formation of high-κ oxide layer.
- More positive charge is accumulated and the nanotube energy band will be bent down even further.

Applications

CMOS integrated logic gates:

We use back-gated structure for p-type SN-TFTs and top-gated structure for ntype SN-TFTs and integrate them together for CMOS circuits

V_g < 0

 $V_{a} = 0$

V_a> 0

Au

th ALD laver

hout ALD laver

- ➢ 95% semiconducting nanotube solution
- > On/off ratio: ~ 10000, peak transconductance: 3.5 μ S
- ➢ Highest mobility of <u>67</u> cm²/V sec

n-Type thin-film transistors:

By passivate the p-type SN-TFTs with high-κ oxide layer using atomic layer deposition (ALD), the transistors are converted to n-type

Before ALD 18			
Belore ALD 18	.1 μA 5.06 μS	$1.616 imes 10^{6}$	5 cm ² V ⁻¹ s ⁻¹
After ALD 17	.4 μA 4.59 μS	$1.34 imes 10^{6}$	3 cm ² V ⁻¹ s ⁻¹

2-bit CMOS CPU (ongoing):

Conclusion

We have developed a platform for high performance n-type and ptype separated nanotube TFTs with high yield. Devices exhibit significantly better performance compared with state-of-the-art amorphous silicon and organic TFTs. Our work represents significant advance toward the challenging tasks such as nanotube separation, assembly, air-stable n-type device fabrication and can provide guidance to future research on SN-TFT based large scale CMOS integrate circuits.

Chuan Wang[†], Jialu Zhang[†], Chongwu Zhou, et al., *Nano Letters*, Vol. 9, pp. 4285-4291, (2009) Chuan Wang[†], Jialu Zhang[†], Chongwu Zhou, et al., *ACS Nano*, Vol. 4, pp. 7123-7132, (2010) Jialu Zhang, Chuan Wang, Chongwu Zhou, et al., *ACS Nano*. ASAP, (2011)

