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1. Introduction 3. Global method using view transfer with N images

Why 3D face modeling ?  View transfer
- Addresses most limitations of 2D face recognition - Using the camera motion and 3D model, pixels in view (i) are
- Pose, illumination, expression (PIE), aging, ... transferred to the corresponding pixels in view (j).
- We find a set of 3D face models that provide consistency across views.
Goal: 3D face model from low-res. image(s) - 2D image features (color values, features descriptors, ...)
- Current 3D face modeling techniques require high resolution images, - Example: the score is the sum of pixel correlation coefficients
videos, or many images

Our approach correlation (
- Morphable face model from a 3D face database

- Pose estimation using affine camera model (1 or N images)

- Update using view transfer and image features (if multiple images)

. . . Example of chosen model
2. 3D head pose estimation from 1 or N images amp

« 2D image(s) * 3D face models

with detected landmarks with pre-defined landmarks 2D images
' |

maximally correlated

o If (iteration =1) Start from randomly selected 3D model
Else Start from the previous minimum distance error model

* Pose estimation with a chosen 3D model

minimally correlated

- P.p: 2D landmarks(LDMKS) - A: affine matrix
- P,p: 3D landmarks(LDMKS) - s: scaling matrix
- t: translation vector - R: rotation matrix
* Local feature approach 4. 3D face mode]ing
- Purpose: Find min. avg. distance error model
- Apply “A & t” to 3D models - Embedding/Mixing
- Only with 2D LDMKS (in white) & projected 3D LDMKS - Local feature approach: fast

- Global surface approach: slow and complex, but better results

 Morphable 3D face modeling

- For initial experiments, we use 1649 3D face models

- From selected models (e.g., 85 models), the final model is built by the
maximum sum of correlation coefficients.

(Blue: minimum distance case, Red: Maximum distance case) i

* Texture mapping

o If (start model #minimum distance model ) iteration +=iteration;
Else { iteration=1; save Affine & Local approach results}

* Repeat the whole sequence until convergence

» Min. distance error & repeatability @ Local feature approach
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ReIoEttho?\(#) with randomly selected start model
(Sorted by the distance error with decided model#)
Pose estimation: (range: £70°, pose error: < +6°)
Rotation [X, Y, Z] (degree)

2D Image min error max error 5. Future Work

[ 3.0, 48.9, 6.5]

» Performance evaluation with ground truth data

» Face expression normalization and neutralization

» Global method with more complex 2D features

» Improvement of deformable 3D face model

» Real application and performance for face recognition

[-9.4, -1.3, 1.5]

[ -18.8, -48.2, 10.6]
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