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Wireless networks
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Energy gridInternet

Flow of information Flow of energyFlow of information

• Separate, individually complex, entities

• Limited interaction between physical and abstract network components

• Control based on protocols (limited adaptability, tenets)

• Protocols not designed for interoperability

!"#$%"&

'(
'(

)*#&$+

,-./0.123

45!"&+6/#1$

7"1"!#8/"3

.195&*#$.51

:51$&5/

:51$&5/+3$#$.51

• Stochastic production 
(renewables)

• Smart and dynamic demand

• Energy market

• Hierarchical control

• Communication infrastructure

• Algorithms (smart buildings, 
control)

• Environment (weather)

• Physical consumer

Services

Applications

Heterogeneous concatenation of networks (local access, backbone)

Communications

Data access
Control

!"#$ • User relationships

• User behavior (connected to 
location, time, etc)

• Communication network

• Distributed data storage

• Distributed computation

Traditional networks: Cyberphysical systems
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Social networks

SmartGrid

Sensor networks

Communication
Infrastructure

Algorithms and 
automated systems

Environment

Humans

...

Cyber-Physical systems
are engineered systems that are built from and depend upon 
the synergy of computational and physical components. !

The CPS of tomorrow will need to far exceed the systems of today 
in capability, adaptability, resiliency, safety, security, and usability.

Emerging CPS will be coordinated, distributed, and connected, 
and must be robust and responsive.

NSF program on CPS 

Traditional analysis tools are unable to cope with the full complexity of 
CPS or adequately predict system behavior.

• Not only a complex physical network, but...

• A complex temporal evolution of the state of each entity 
(enormous state space of the system)

• Complex interactions

•System modeling and prediction

•Estimation (“state” or “regime”) 
from observation

•Control and planning
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Understanding not only the physical 
structure, but also the logical structure
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We propose to use wavelet-analysis and sparse 
approximation theory for prediction, estimation and 
control in complex CPSs

• Protocols, algorithms and environment induce a structured 
behavior of the CPS

• Structure = redundancy and enables compression

• Graph wavelets functions are used to capture typical 
structures in the Finite State Machine modeling the behavior 
of the CPS

• Spare approximation algorithms can be used to estimate 
functions defined on the state space of the CPS from a small 
number of observations

• Specific wavelets can be used to extrapolate properties of 
these functions and accelerate control

Learning: performance improved by many orders 
of magnitude

Whole system
Challenges: Contribution:

• Collection of terminals connected by wireless links (data, 
interference)

• The state of the terminals is defined by a collection of 
variables whose value evolves over time

• State: protocol state (number of pkt in the buffer, reTx 
index, backoff, etc), environment state (e.g., channel)

• Evolution defined by protocols and control
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state

terminal

Example: Cognitive network

interference link

data link

S={S(0), S(1), S(2), . . .}
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p(s, s′) = P(S(t+1)=s′|S(t)=s)

Temporal evolution of the state of the network modeled as a Finite State Machine

Statistics: Markov model 

Transition probabilities

Physical graph -to- Logical graph

c(S(t)) = c(S(t))+E
[ ∞∑

τ=1

γτ c(S(t + τ))
]

c(s) = c(s)+
∑

s′∈S

∞∑

τ=1

γτpτ (s, s′)c(s′)

Transition cost
c(S(t), S(t + 1))

Expected discounted 
long-term cost from S(t)

Connection with the 
structure of the graph

State cost
c(s)=Es′∈S [c(s, s′)] =

∑

s′∈S
p(s, s′)c(s, s′)

• Performance of the network captured 
by the expected discounted long-term 
cost function (cost-to-go)

• Cost functions defined to measure: 
throughput, delay, packet loss
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The trajectory of the state of the FSM in its state generates a sequence of 
state-cost observations

Estimation of the transition matrix and the cost vector (average cost)

Estimation of the cost-to-go function

P̂ ĉ,
[
P̂(T )

]

ij
=

{PT−1
t=1 1(S(t)=i,S(t+1)=j)PT−1

t=1 1(S(t)=i)
if ∃S(t) = i, t = 0, . . . , T − 1

0 otherwise,
,

[ĉ(T )]i =

{PT−1
t=1 1(S(t)=i)c(S(t),S(t+1))PT−1

t=1 1(S(t)=i)
if ∃S(t) = i, t = 0, . . . , T − 1

0 otherwise
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Due to the enormous size of the state space of the FSM the estimated 
transition matrix and cost vector are noisy and incomplete estimates

For an accurate estimation of the cost-to-go function, all the states need to 
be hit/observed a large number of times

Enormous observation time
Larger than the coherence time?

Learning not practical in wireless nets

x∗(T ) = arg min
x
‖R(T )ĉ(T )−R(T )B̂(T )Wx‖2

2 + λ‖x‖1

Reconstruction of a sparse signal from a small number of noisy measurements

Due to the structure of the FSM       is sparse in the wavelet domain

R Tibshirani: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical 

Society. Series B 1996, 58:267–288

B̂(T ) = (I− γP̂(T ))

c

Φ = R(T )(I− γP̂(T ))

Ψ = W
sensing matrix

representation matrix

Restricted Isometry Property:  the observation matrix B is said to 
satisfy the restricted isometry property of order S with parameter              , i.e. 
                    if

P (RHB does not satisfy RIP(δS , S)) ≤ exp
(
−c1K

S2

)

K2 ≥ 192 log NS2

δ2
S − 64c1

δS ∈ (0, 1)

RIP(S, δS)

(1− δS)‖x‖22 ≤ ‖Bx‖22 ≤ (1 + δS)‖x‖22

We showed that:

K is the number of states observed in the sample-path

N is the size of the state space

RIP implies that B is approximately an isometry for S-sparse signals

c1 ≥
δ2
S

64
K ∼ O

(
S2

√
n log n

)
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Channel, buffer, packet arrivals

Retransmissions, Delay,...

Backoff, Time To Live

The proof is based on the decomposition 
of the graph is smaller chains (sub-chains)

The overall graph preserves the 
connectivity structure of the sub-chains 

Sub-chains local and regular

Overall graph local and regular

3 fundamental types of sub-chains:
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~2000 states

2 mutually interfering terminals

• Packet arrival

• Packet buffering

• Packet retransmission (ARQ)

Cost function measures 
aggregate throughput
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Approximated Value Function
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Our algorithm
std learning
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The directed graph associated with 
the is regular and local, and 

present typical sub-structures

Networking protocols (e.g., 802.11 MAC) induce a structured behavior of the 
FSM modeling the network

Do we need to 
observe all the states?

Learning on the 
sub-structures

The cost-to-go function is intimately 
connected with these structures

c(s) = c(s)+
∑

s′∈S

∞∑

τ=1

γτpτ (s, s′)c(s′)

We use graph wavelets (Diffusion wavelets) to encode these sub-structures 
into a basis set of representative functions

Coifman RR, Maggioni M: Diffusion wavelets. Applied and Computational Harmonic Analysis 2006

Sparsifying basis for the cost-to-go function!

A small number of DW functions is needed for accurate representation

Local diffusion operator (e.g., P)

Regularity ensures aggressive sub-sampling at larger time-scales

DW functions are computed by sequentially applying P at the 
current scale k, compressing the range via a local 
orthonormalization procedure, representing the operator in 
the compressed range and computing the        on this range. 
Functions defined on the support space are analyzed in 
multiresolution fashion, where dyadic powers of the diffusion 
operator correspond to dilations, and projections correspond 
to downsampling.
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