Ming Hsieh Department of Electrical Engineering

School of Engineering

A Jointly Cooperative Scheme for Secondary Spectrum Access

Songze Li, Urbashi Mitra

➢ primary Tx is transmitting to the primary Rx

➤ cognitive Tx wants to transmit to cognitive Rx through the same spectrum with primary user

Two phase transmission scheme

orthogonal scheme
(only one of PT and ST is transmitting in one
phase)

➢phase 1 and 2 have equal length

Transmitted signals for time frame i

Joint cooperation

➢ST and PT are both willing to spare part of their own transmit power to relay the others' message

In the decode-and-forward relaying is applied at PT and ST in alternating phases

System Markov chain

➢ transmitted signals determined by results of decoding other's message at PT and ST

Signals from 3 phases needed to decode xpi and xsi at receivers

➤ the whole system is in one of 6 states defined by decoding results at transmitters

			51
phase 1	PT decodes Xs(i-1)	$\sqrt{\alpha_1 P_p} x_{pi} + \sqrt{(1 - \alpha_1) P_p} x_{s(i-1)}$	silent
	else	x_{pi}	silent
phase 2	ST decodes xpi	silent	$\sqrt{\alpha_2 P_s} x_{pi} + \sqrt{(1 - \alpha_2) P_s} x_{si}$
	else	x_{pi}	silent

 $\triangleright \alpha_1$ and α_2 are power allocation coefficients at the PT and ST respectively

Closed form expressions for probability transition matrix and stationary distribution

Joint decoding

Separate decoding

➢ PR and SR do not talk to each other and try to decode interested messages separately

PR and SR antennas form a virtual antenna array (a two-user SIMO MAC)
received signal for state k:

Exact expressions or tight approximations for both primary and secondary outage probabilities in all six states are derived

Ming Hsieh Department of Electrical Engineering

Funded in part by NSF CCF-0917343