Efficient Resource Scheduling for an LTE

USC Viterbi

School of Engineering

Network in Shared Spectrum

Matthew Clark and Konstantinos Psounis

Introduction

- Pending auction of 1695-1710 MHz
- New RF spectrum sharing
- Meteorological satellite downlinks primary
- Mobile wireless, e.g., LTE, uplinks secondary
- New resource scheduling algorithms needed
- Power, frequency and time allocation
- Interference protection constraints

Scheduling Optimization Problem maximize $\sum_{b=1}^{N_b} \sum_{i=1}^{N_u^b} U(A_i^b, T_i^b, P_i^b)$ **Utility** subject to $A_i^b \in \{1, ..., M\}, \forall i, b$ Non-overlapping and $T_i^b \in \{0, ..., M+1-A_i^b\}, \forall i, b$ contiguous frequency $A_{i}^{b} + T_{i}^{b} \leq A_{m}^{b}, \forall i, m, b : A_{m}^{b} \geq A_{i}^{b}$ allocations $Pr\{\sum_{j\in W_p} I_j \ge I_t\} \le p_t$ Interference protection $0 \leq P_i^b, \forall i, b,$ Device transmit power $T_i^b P_i^b \le P_{max}, \, \forall i, b,$ limits

Equal Interference Power Allocation (EIPA)

Sub-problem $\sum_{i=1}^{N_u} U(P_i)$ maximize $Pr\{I_j \ge I_t\} \le p_t$ subject to $I_j = \sum_{i=1}^{N_u} P_i g_i^1 z_i$ $0 \le P_i \le P_{max}, \, \forall i,$ Numerical Optimization for Sum-Rate Utility Interterence at primary receiver (dBm)

Gain to BS over gain to primary receiver (dB)

Observations

- Power allocations causing equal interference at the victim receiver will allow more total transmit power across the secondary network
- Some subscriber devices may need to be restricted from operating in interference protected frequencies
- Utility for a single device should be positively correlated with channel gain to base station, and negatively correlated with channel gain to victim receiver

Algorithm:

(Sum-Rate and F-W Approx.*)

```
1: L \leftarrow 1 , s = (\sigma_{dB}(\ln 10)/10)^2
 2: R_{best} \leftarrow 0
 3: Order UEs by descending gain ratio
4: \mu \leftarrow I_{th} + \frac{5}{\ln 10} \left[ \ln \left( \frac{L + e^s - 1}{L^3} \right) - 2Q^{-1}(p_{th}) \sqrt{\ln \left( \frac{L + e^s - 1}{L} \right)} - s \right]

5: P_{new}(1:L) \leftarrow 10^{\mu/10}/g_1(1:L)

6: P_{new}(L+1:N_u) \leftarrow 0
 7: R_{new} \leftarrow \sum_{i=1}^{L} \log_2 \left(1 + \frac{P_{new}(i)g_2(i)}{N_2}\right)
8: if R_{new} > R_{best} then
              R_{best} \leftarrow R_{new}
              P_{best} \leftarrow P_{new}
             L \leftarrow L + 1
             goto 4
13: else
              return P<sub>best</sub>
```

*L. Fenton, The sum of log-normal probability distributions in scatter transmission systems, IRE Trans. Comm. Syst., vol. 8, no. 1, March 1960

Equal Interference Contribution

- Run EIPA on all subscriber devices in network
- For subscribers allocated zero power by EIPA, set their utility functions to zero in the protected resource blocks
- For subscribers allocated nonzero power by EIPA, set their utility functions to reflect this power limit
- Perform resource block assignment with any frequency domain assignment algorithm using the modified utility functions
- Repeat step 4 at each scheduling time slot. Repeat steps 1 through 3 at a suitable interval

Scheduling (EICS)

- Delay
 - Traffic priorities
 - Filtering
- Information requirements and uncertainty

Parameter	Description
M	Number of schedulable resource blocks
N_b	Number of base stations in the network
N_u^b	Number of subscribers on base station b
N_u	Number of subscriber devices in the network
N_2	Thermal noise at base station receivers
σ_{dB}	Standard deviation of channel gain
I_t	Harmful interference threshold
p_t	Maximum probability that I_t may be exceeded
W_p	The set of resource blocks subject to interference protection
P_{max}	Maximum subscriber device transmit power
P_i^b	Subscriber transmit power per resource block
$g_{i,j}^{\mathtt{1},b}$	Mean channel gain of subscriber to primary/victim receiver
$g_{i,j}^{2,b}$	Mean channel gain of subscriber to intended base station
$z_{i,j}^b$	Random variable for channel gain uncertainty e.g., shadowing
A_i^b	Subscriber leftmost resource block assignment
T_i^b	Subscriber number of resource blocks assigned

EICS Simulation Results Achieved Network Throughput

Small-Scale Trials

Ten node network to facilitate comparison to optimal scheduling result found through global search

50% of resource blocks are interference protected in all trials shown

Large-Scale Trials

1000 node network comparison against simple approach of never using interference protected resource blocks

40% of resource blocks are interference protected in all trials shown