Ming Hsieh Department of Electrical Engineering Neural Stimulating CMOS Chip

School of Engineering

Aria Samiei and Hossein Hashemi Ming Hsieh Department of Electrical Engineering

Motivation

Develop a fully implantable bioelectronics system, capable of interfacing with neural systems in a bidirectional manner (recording and stimulation), specifically for log-term, freeroaming, small animal neuroscience research.

The implantable system includes a multi-electrode neural stimulating and recording CMOS integrated circuit with wireless power and data telemetry capability (Prof. Hashemi's group), parylene microelectrode arrays (Prof. Meng's group), and other necessary components in a proper package (Prof. Weiland's group). The envisioned experiments using this platform by neuroscientist collaborators (Prof. McGee's and

Prof. Berger's groups) include experiments in visual cortex plasticity, experiments in visual mid-brain plasticity, and hippocampal studies to identify neural behaviors of untethered animals in complex environments.

Neural Stimulator Chip Architecture

State of the Art

- Single- and multi-electrode neural stimulating integrated circuits, realized in CMOS, have been reported by research groups and are offered by companies (e.g., Intan Technologies).
- x Shortcomings of the existing solutions • Power inefficient

in 0.13µm SOI CMOS",

ISSCC 2016

C. M. Lopez, et al., IMEC.

384 Configurable Channels

- Intan Technologies amplifier

Innovative Approaches & Design Features

• Adjust the level of DC power supply of the current stimulator as a function of stimulating current to ensure a low dropout voltage across stimulating devices and maintain high efficiency across a wide range of stimulating current and load values.

- Switched-capacitor DC-DC voltage converters with shared capacitors generate the necessary DC power supplies.
- Charge-balancer ensures zero net-charge accumulation/depletion in the tissue (load).
- Two stimulating modes: (1) Pre-programmed biphasic periodic waveform with controllable pulse

- intervals (9 bits for each time instance t_0 , t_1 , t_2 , t_3 and t_4) and amplitude (9 bits for each amplitude $A_0, A_1, A_2 \text{ and } A_3),$
- (2) Arbitrary waveform every 50 µs a new latched pulse may be sent to the chip from an external source.
- Amplitude of the stimulating current may vary within (-100 μ A, +100 µA) in 100 nA steps.
- The load can vary from a few $k\Omega$ to 40 $k\Omega$ to accommodate for different electrode sizes and implant locations.

Circuit Building Blocks

Current Source Blocks

Chip Layout (130nm CMOS)

Performance Summary

	[1]	[2]	[3]*	[4]**	[5]	I his Work
Technology	0.18-µm SOI	0.35-µm HV CMOS	0.18-µm HV CMOS	0.35-µm HV CMOS	0.35-µm HV CMOS	0.13-μm CMOS
VDD (V)	0.8	3.3	3.3	3.3	3.3	±3
Stimulation Supply Voltage V _{Stim} (V)	-3.3 ~ +3.9	2.5-17 Programmable (3 bits) Charge Pump	7	120	75	±0.56, ±0.94, ±1.44, ±1.9, ±2.3 Automatically Reconfigurable
Channel Count	16	8	8	8	8	1
Max. Output Current	145 µA	310 µA	1 mA	10.24 mA	4 mA	127 µA
Output Resolution (bits)	5	10	6	8	6	7
DNL/INL (LSB)	N/A	N/A	0.16/1.25	0.19/0.16	0.4/2.2	0.6/0.6
Max Frequency (kHz)	N/A	3.3	20	N/A	2	10
Total Quiescent Power	N/A	5-29 mW	559 µW	14.4 mW	2.15 mW	32 µW
Power/channel	N/A	0.6-3.6 mW	70 µW	1.8 mW	269 µW	4 µW***
Die Size (mm ²)	9	17.68	2 (estimated)	7.1	5.94 (core)	2.1
Channel Area (mm ²)	0.56	2.21	0.25 (estimated)	0.28	0.74	0.49

Simulated Results

* Sensor, sound processor and ADC are not included for a better comparison. ** Simulation results are reported. ***Assuming an 8 channel realization. [1] S. Ha et al., "A 16-Channel Wireless Neural Interfacing SoC With RF-powered Energy Replenishing Adiabatic Stimulation", Symposium on VLSI Circuits Digest of Technical Papers, 2015

[2] L. Bisoni et al., "An HV-CMOS Integrated Circuit for Neural

Stimulation in Prosthetic Applications", IEE Transactions on Circuits and Systems, VOL. 62, No. 2, February 2015

[3] M. Yip et al., "A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation", IEE Journal of Solid State Circuits, VOL. 50. No. 1, January 2015

[4] D. Osipov and S. Paul, "8 Channel Neural Stimulation ASIC for Epidural Visual Cortex Stimulation with on Board 90 ppm/°C Current Reference", IEEE, 2015 15 L. Zeng et al., "A high-voltage stimulation chip for wearable stroke rehabilitation systems". International Journal of Circuit Theory and Applications. November 2015

Future Work

- Other methods to increase current source efficiency will be investigated.
- Neural signal recording system will be designed addressing 2 main challenges: 1) Area per channel (< 40 µm x40 µm)
 - 2) Power per channel (< 1 μ W)
- Stimulating and recording systems will be integrated on a single chip, with wireless power and data telemetry capability.

Contact: samiei@usc.edu, hosseinh@usc.edu