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•  Adjust the level of DC power supply of the  
     current stimulator as a function of stimulating 
     current to ensure a low dropout voltage  
     across stimulating devices and maintain high  
     efficiency across a wide range of stimulating  
     current and load values. 
•  Switched-capacitor DC-DC voltage converters with shared capacitors 

generate the necessary DC power supplies. 
•  Charge-balancer ensures zero net-charge accumulation/depletion in the 

tissue (load). 
•  Two stimulating modes: 
            (1) Pre-programmed biphasic periodic 
                  waveform with controllable pulse  
                  intervals (9 bits for each time instance 
                  t0, t1, t2, t3 and t4) and amplitude (9 bits for each amplitude 
                 A0, A1, A2 and A3), 
            (2) Arbitrary waveform – every 50 µs a new latched pulse may 
                 be sent to the chip from an external source. 
•   Amplitude of the stimulating current may vary within (-100 µA, 
     +100 µA) in 100 nA steps. 
•  The load can vary from a few kΩ to 40 kΩ to accommodate for different 

electrode sizes and implant locations. 
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Technology 0.18-µm 
SOI 

0.35-µm 
HV 

CMOS 

0.18-µm 
HV CMOS 

0.35-µm 
HV 

CMOS 

0.35-µm 
HV 

CMOS 

0.13-µm 
CMOS 

VDD (V) 0.8 3.3 3.3 3.3 3.3 ±3 

Stimulation 
Supply Voltage 

VStim (V) 
-3.3 ~ +3.9 

2.5-17  
Programmable 

(3 bits) 
Charge Pump 

7  120  75 

±0.56, ±0.94, 
±1.44, 

±1.9, ±2.3 
Automatically 

Reconfigurable 

Channel Count 16 8 8 8 8 1 

Max. Output 
Current 145 µA 310 µA 1 mA 10.24 mA 4 mA 127 µA 

Output Resolution 
(bits) 5 10 6 8 6 7  

DNL/INL (LSB) N/A N/A 0.16/1.25 0.19/0.16 0.4/2.2 0.6/0.6 

Max Frequency 
(kHz) N/A 3.3 20 N/A 2 10 

Total Quiescent 
Power N/A  5-29 mW 559 µW 14.4 mW 2.15 mW 32 µW 

Power/channel N/A  0.6-3.6 mW 70 µW 1.8 mW  269 µW 4 µW*** 

Die Size (mm2) 9 17.68 2  
(estimated) 7.1 5.94 

(core) 2.1 

Channel Area 
(mm2) 0.56 2.21 0.25 (estimated) 0.28 0.74  0.49 

* Sensor, sound processor and ADC are not included for a better comparison.   ** Simulation results are reported.    ***Assuming an 8 channel realization. 
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Develop a fully implantable bioelectronics system, capable of 
interfacing with neural systems in a bidirectional manner 
(recording and stimulation), specifically for log-term, free-
roaming, small animal neuroscience research.  
The implantable system includes a multi-electrode neural 
stimulating and recording CMOS integrated circuit with wireless 
power and data telemetry capability (Prof. Hashemi’s group), 
parylene microelectrode arrays (Prof. Meng’s group), and other 
necessary components in a proper package (Prof. Weiland’s 
group). The envisioned experiments  using this platform by 
neuroscientist  collaborators (Prof. McGee’s and  
Prof. Berger’s groups) include  
experiments in visual cortex plasticity,  
experiments in visual mid-brain  
plasticity, and hippocampal studies to  
identify neural behaviors of untethered  
animals in complex environments. 

State of the Art Innovative Approaches & Design Features 

Circuit Building Blocks 

Simulated Results 
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Future Work 

50pF 

•  Other methods to increase current source efficiency will be investigated. 
•  Neural signal recording system will be designed addressing 2 main challenges: 
    1) Area per channel (< 40 µm x40 µm) 
    2) Power per channel (< 1 µW) 
•  Stimulating and recording systems will be integrated on a single chip, with wireless 

power and data telemetry capability.   
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•  fsw = 2-3 MHz 
•  Conversion ratios 5:1, 3:1, 2:1, 3:2 and 6:5 
•  Generating both positive and negative voltages 

from 3 V and -3 V voltage sources 
•  Efficiency > 60% (peak 85%) 
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Rt = 15-30 kΩ 

During the resting time between consecutive cycles (user controlled), short current pulses cancel 
any residue charge on the electrode, if the electrode voltage goes beyond the safety window.  

Top current source 

•  Single- and multi-electrode neural 
stimulating integrated circuits, realized in 
CMOS, have been reported by research 
groups and are offered by companies 
(e.g., Intan Technologies). 

 
x   Shortcomings of the existing solutions 
           �   Power inefficient 

“A 966-Electrode Neural  Probe with  
384 Configurable Channels  
in 0.13µm SOI CMOS”,   
C. M. Lopez, et al., IMEC.  
ISSCC 2016 

Intan Technologies amplifier  
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•  8 bit resolution + 1 bit redundancy 
•  Minimum pulse width 50 µs 
•  Settling time 10 µs for 90% rise/fall time 

•  In evaluation phase, the conversion ratio controller circuitry is on. 
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