
Convolutional Neural
Network on FPGA

Chi Zhang
FPGA/Parallel Computing Lab

fpga.usc.edu

Motivation and Problem Definitions Approach

Algorithm and Hardware CPU + FPGAMapping

Experiments and Results

Discussions and Future Work

System Level Optimization

• Convolutional Neural Network (CNN)
achieves the state-of-art performance in
image recognition, natural language
processing and bioinformatics.

• High computation complexity in both
inference and training, which needs specific
hardware to accelerate.

• FPGA plays an important role due to its re-
configurability and massive parallelism.

• Automatic Generation Tool: How to design a
system that apply to a wide range of CNN
architectures remain challenging.

Algorithm Optimization

Hardware Module
Implementation

System Level Optimization

Prototype on FPGA

• Analyze the basic computational structure of
CNN and identify fast algorithm for acceleration.

• Build highly-optimized and parameterized
hardware accelerator module for specific
algorithm including Matrix operations, Fast
Fourier Transform, Winograd algorithm, etc.

• Given CNN architecture, utilize the hardware
modules from library to build a full system.

• Explore the system level optimization including
memory sub-system, resources distribution and
scheduling algorithm.

• Prototype on specific FPGA device.

• Frequency Domain Acceleration using
FFT and Overlap-and-Add.

• Increase on-chip data reuse to reduce
FPGA-memory bandwidth requirement.

• Exploit task parallelism if there are
available resources and bandwidth.

Asymptotic Analysis
• Space convolution: 𝑂 𝑁#𝐹#
• OaA convolution: 𝑂(𝑁# log 𝐹)
GFLOP Reduction
• CaffeNet (2012): 48.82%
• VGG16 (2014): 54.10%
• GoogLeNet (2014): 39.43%

Experimental Setup
• Intel QuickAssist QPI FPGA Platform (Xeon + Altera Stratix V)
• Shared memory between CPU and FPGA
• 6 GB/s FPGA-memory bandwidth + 6.25 MB on-chip BRAM
• Experimented CNN architectures: AlexNet, VGG16, GoogLeNet

Performance Comparison
• 1.1x delay with 3x less resources consumption
• Without loss of accuracy for any modern CNN

architectures.

Energy Efficiency. A CPU-FPGA based design will consume more power than FPGA-only based design. However, the CPU adds more flexibility to the design. Moreover, since most of the 
computations are inside convolutional layer, the CPU simply performs adding and data rearrangement and the energy consumption will not scale up quickly if we increase the CNN size. 
Automatic Code Generation. Our framework provides complete solution to accelerate CNN on FPGA including inter-layer data rearranging. Modern CNNs’ convolutional layers are mainly 
consist of small kernels. Thus, by zero-padding various kernel sizes to fit a chosen FFT size, and using FPGA to accelerate it by exploiting massive parallelism, we can achieve 
considerable performance improvement for various CNN models. We can use our framework to develop an automatic code generation tool so high-level users can specify CNN models and 
generate the design automatically.
Fixed Point vs. Floating Point. Many previous approaches use fixed point instead of floating point for computations. The advantage is less resources consumption and the power 
efficiency. However, it penalizes the classification accuracy. Some approaches claim that the classification accuracy is tolerable according to experiments. However, it is hard to generalize 
to an arbitrary CNN model.


