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Motivation and Problem Definitions Approach

Convolutional Neural Network (CNN)
achieves the state-of-art performance in
Image recognition, natural language
processing and bioinformatics.

High computation complexity in both
inference and training, which needs specific
hardware to accelerate.

FPGA plays an important role due to its re-
configurability and massive parallelism.
Automatic Generation Tool: How to design a
system that apply to a wide range of CNN
architectures remain challenging.

Analyze the basic computational structure of
CNN and identify fast algorithm for acceleration.
Build highly-optimized and parameterized
hardware accelerator module for specific
algorithm including Matrix operations, Fast
Fourier Transform, Winograd algorithm, etc.
Given CNN architecture, utilize the hardware
modules from library to build a full system.
Explore the system level optimization including
memory sub-system, resources distribution and
scheduling algorithm.

Prototype on specific FPGA device.

Algorithm Optimization

Hardware Module
Implementation

System Level Optimization

Prototype on FPGA

CPU + FPGA Mapping

Main Memory

System Level Optimization

Algorithm and Hardware

Frequency Domain Acceleration using
FFT and Overlap-and-Add.

Increase on-chip data reuse to reduce
FPGA-memory bandwidth requirement.
”::’::J::"‘ Exploit task parallelism if there are

s available resources and bandwidth.
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Figure 3: CPU-FPGA Shared Memory Model e
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Figure 4: Proposed Mapping
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Experiments and Results

AlexNet CONV Layer (GFLOP) VGG16 CONV Layer (GFLOP) GoogleNet CONV Layer (G FLOP) Asymptotic Analysis GoogLel\éfec(ﬁ:;‘:l;it:z:?zg er only)
3 40 P Space convolution: O(N*F?) Layer CPU | CPU (1 thd)
2 30 &> . N «  OaA convolution: O(N?log F) (16 thds) | + FPGA
N 20 RN PR > A i CONV1 38.53 12.70
LR o P O I 0 S T AARICS | RN q\, O e GFLOP Reduction CONV2 117.13 17.14
o == M o =2 mZ N Bu > 2 IR 908 I!  Hns . CaffeNet (2012): 48.82% Tnceptiond | 91.05 16.16
CONV1 CONV2 CONV3 CONV4 CONV5 Total CONV1 CONV2 CONV3 CONV4 CONV5 Total 0 COMY  CONE  BETRONIBIITIONBRIITIONS  Totst . VGG1 6 (201 4) 54 10% Inception4 173.21 290.16
M Space Convolution ™ Overlap-and-Add M Space Convolution ™ Overlap-and-Add = Space Convolution ® Overlap-and-Add ™ OaA + Space . . .. 0 Inception5 45.45 8.48
GoogLeNet (2014): 39.43% Total TeEar 33 64
(a) AlexNet (2012) (b) VGG16 (2014) (c) GoogLeNet (2014) Throughput
Figure 7: Floating Point Operations required in various state-of-art CNNs (GFLOPS) 17.36 96.60
[21] [14] Our Work Experimental Setup Table 9: GoogLeNet Convolutional Layer Performance
Virtex7 Z Intel QuickAssist . . . .
Platform vxasst | XCvzods v iy » Intel QuickAssist QPI FPGA Platform (Xeon + Altera Stratix V)  Performance Comparison
Clock (MHz) 100 150 200 « Shared memory between CPU and FPGA * 1.1x delay with 3x less resources consumption
B;gt;ifi’tr}fc(gg;s) 32-Dit Foat | 10D fixed 32 ot ot - 6 GB/s FPGA-memory bandwidth + 6.25 MB on-chip BRAM - Without loss of accuracy for any modern CNN
CNN Model AloxNet | VGG16SVD | AleNet  Tvaais| °* Experimented CNN architectures: AlexNet, VGG16, GooglLeNet architectures.
MM;emc;ry 4-341\;113 2-1?82’13 4-221;"[13 4-221\21]3 VGG16 Execution Time (ms) AlexNet Execution Time (ms)
ultipliers Layer (Group) | FPGA FPGA . FPGA .
Thro‘fg;?ﬁ'(t) I(’g;)NV) 61.62 187 80 83.00 197 48 (Theoretical) | (Actual) CPU | Sequential | Concurrent (Actual) CPU | Sequential | Concurrent
PO CONV1 30.96 31.53 | 7.76 39.29 32.74 - 17.17 17.17 17.17
Delay (CONV) (ms) 21.61 163.42 | ppaA:23.64 | 26327 CONV2 44.36 46.01 418 50.19 46.48 7.86 0.09 7.95 7.94
Delay x Multipliers 16142 127467 9141/5295 58972 CONV3 81.92 82.27 3.54 85.81 82.75 4.42 0.12 4.54 4.50
Classiﬁcati?n. éccuracy Lossless I.JOS:SY Lossless CONV4 81.92 82.77 1.37 84.14 82.90 6.64 0.15 6.79 6.71
Flexibility Any CNN | Limited Any CNN CONV5 17.69 18.36 0.27 18.63 18.40 4.42 0.11 4.53 4.49
Table 7: Performance Comparison with the State-of-Art CONYV Total 256.85 262.94 17.12 280.06 263.27 23.34 17.64 40.98 40.81

CNN Implementations on FPGA Table 6: Execution Time for VGG16 and AlexNet

Discussions and Future Work

Energy Efficiency. A CPU-FPGA based design will consume more power than FPGA-only based design. However, the CPU adds more flexibility to the design. Moreover, since most of the
computations are inside convolutional layer, the CPU simply performs adding and data rearrangement and the energy consumption will not scale up quickly if we increase the CNN size.

Automatic Code Generation. Our framework provides complete solution to accelerate CNN on FPGA including inter-layer data rearranging. Modern CNNs’ convolutional layers are mainly
consist of small kernels. Thus, by zero-padding various kernel sizes to fit a chosen FFT size, and using FPGA to accelerate it by exploiting massive parallelism, we can achieve
considerable performance improvement for various CNN models. We can use our framework to develop an automatic code generation tool so high-level users can specify CNN models and
generate the design automatically.

Fixed Point vs. Floating Point. Many previous approaches use fixed point instead of floating point for computations. The advantage is less resources consumption and the power
efficiency. However, it penalizes the classification accuracy. Some approaches claim that the classification accuracy is tolerable according to experiments. However, it is hard to generalize
to an arbitrary CNN model.
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