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Table . Literature Survey on Localization Methods and Metrics

Study

Algorithm

Model

Metric

WLAN location determination via
clustering and probability
distributions [Youssef et al. 2003]

MLE

Fingerprinting

P(d)

Maximum likelihood localization
estimation based on received signal
strength [Waadt et al. 2010]

MLE

Log-Normal

MSE

Experimental comparison of
RSSI-based localization algorithms
for indoor wireless sensor
networks [Zanca et al. 2008]

Multilateration
and MLE

Log-Normal

EDE

A Bayesian sampling approach to
in-door localization of wireless
devices using RSSI [Seshadri et al.
2005]

Weighted MLE
and Error CDF

Fingerprinting

EDE

RADAR: An In-Building RF-based
user location and tracking

system [Bahl and Padmanabhan
2000]

Clustering

Fingerprinting

EDE

The Horus WLAN location
determination system [Youssef and
Agrawala 2005]

MLE

Fingerprinting

EDE

* The current RF localization literature is disconnected and
disorganized, with no theoretical understanding of how
we can compare different algorithms.

e Often first an algorithm is proposed, arrived at chiefly
out of experience or intuition.

* Algorithm evaluation is often based on metrics chosen
after the design of the said algorithm.

* |nstead, we advocate an optimization based approach
where the objective specifies the desired performance
characteristics of the derived algorithm.

* An optimization based approach allows us to define a
partial ordering over the set of algorithms, allowing for
fair and meaningful algorithm evaluation.
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Table Il. Recovering existing algorithms in our framework
Algorithm  Cost function Optimization
MMSE Clr,#,0) = (|F — r2)?2 rvMsE = argming, B [(||f~ . 'r||2)2]
MEDE C(r,r,0) = |7 — 7|2 ryeppe = argming E [||7 — r||2]
MP(d)  C(r,i0) =P (|F—rlla<d) Tarpa) =argmax; E[P (|7 - 7[> < d)
MLE C(r,7,0) = —P(||[r—7r|2<e€) ryrrg =Ilimcsoargmax; E[P (||r — |2 < ¢€)]

Definition 4.4. Let g : Q C R>y — R>( be a monotonically increasing function.
Denote the set of all such functions by G. For a localization algorithm A, g(D4) is the

distance error localization cost function. E [g(D 4)] is the expected cost of the algorithm
A.
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The error CDFs of MLE, MP(d), MMSE and MEDE. For this illustration,
nine transmitters were placed evenly in a line and log-normal fading
was assumed. Note that none of the given algorithms are strictly
stochastically dominated.

THEOREM: For any two localization algorithms A1, A> € A, if A, stochastically
dominates A, then
E[g(Da,)] <E[g(Da,)] Vgeg.
If A, strictly stochastically dominates A, then
Elg(Da,)] <E[g9(Da,)] Vgeg.

THEOREM: For any two localization algorithms A, and As, if As does not
stochastically dominate A, and vice versa, then there exits distance based cost functions
g1, 92 € G such that

E[g1(Da,)] < Elg1(Da,)],
and

E[g2(Da,)] <Elg2(Da,)].
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