

USC Viterbi

School of Engineering

Ming Hsieh Department of Electrical Engineering

A Unifying Bayesian Optimization Framework for Radio Frequency Localization

Nachikethas A. Jagadeesan and Bhaskar Krishnamachari

Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks [Zanca et al. 2008]	Multilateration and MLE	Log-Normal	EDE
A Bayesian sampling approach to in-door localization of wireless devices using RSSI [Seshadri et al. 2005]	Weighted MLE and Error CDF	Fingerprinting	EDE
RADAR: An In-Building RF-based user location and tracking system [Bahl and Padmanabhan 2000]	Clustering	Fingerprinting	EDE
The Horus WLAN location determination system [Youssef and Agrawala 2005]	MLE	Fingerprinting	EDE

- The current RF localization literature is disconnected and \bullet disorganized, with no theoretical understanding of how we can compare different algorithms.
- Often first an algorithm is proposed, arrived at chiefly \bullet out of experience or intuition.
- Algorithm evaluation is often based on metrics chosen \bullet *after* the design of the said algorithm.
- Instead, we advocate an optimization based approach \bullet where the objective specifies the desired performance

Definition 4.4. Let $g : Q \subseteq \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be a monotonically increasing function. Denote the set of all such functions by \mathcal{G} . For a localization algorithm A, $g(D_A)$ is the distance error localization cost function. $E[g(D_A)]$ is the expected cost of the algorithm A.

characteristics of the derived algorithm.

An optimization based approach allows us to define a \bullet partial ordering over the set of algorithms, allowing for fair and meaningful algorithm evaluation.

The error CDFs of MLE, MP(d), MMSE and MEDE. For this illustration, nine transmitters were placed evenly in a line and log-normal fading was assumed. Note that none of the given algorithms are strictly stochastically dominated.

For any two localization algorithms $A_1, A_2 \in A$, if A_1 stochastically THEOREM: dominates A_2 , then

 $\operatorname{E}\left[g(D_{A_1})\right] \leq \operatorname{E}\left[g(D_{A_2})\right] \quad \forall g \in \mathcal{G}.$

If A_1 strictly stochastically dominates A_2 , then

 $\operatorname{E}\left[g(D_{A_1})\right] < \operatorname{E}\left[g(D_{A_2})\right] \quad \forall g \in \mathcal{G}.$

THEOREM: For any two localization algorithms A_1 and A_2 , if A_2 does not stochastically dominate A_1 and vice versa, then there exits distance based cost functions $g_1, g_2 \in \mathcal{G}$ such that

 $E[g_1(D_{A_1})] < E[g_1(D_{A_2})],$

and

$$E[g_2(D_{A_2})] < E[g_2(D_{A_1})].$$

Ming Hsieh Institute

Ming Hsieh Department of Electrical Engineering

nanantha@usc.edu