

Ming Hsieh Department of Electrical Engineering

Bandwidth Optimizations for 3D Memory Processing

Shreyas G. Singapura, Rajgopal Kannan and Viktor K. Prasanna

Introduction & Motivation

- High performance processor: Frequency, # cores
- Memory Wall
 - Speed gap b/n memory and processors
 - Low bandwidth, high latency
- Solution: 3D Memories

Challenges

- Large design space due to large number of parameters
- Row activation overhead for every access
- Low page hit rate degrades bandwidth
- Accessing different rows: activation energy

Modeling 3D Memory

- Timing parameters
 - different column
 - different rows
 - different banks
 - different layers

Fig: 3D Memory Architecture

Optimized Data Layout

- Exploit parallelism at all levels:
 - Distribute elements across vaults
 - Inter-layer pipelining (t_{layer})
- Exploit large number of banks:
 - Hide t_{col} and t_{row}

PARSEC 2.0 Benchmark Memory is organized as a set of N blocks Pattern decided by user/algorithm -> /*X/2/*////e/ random \mathbf{N} Time Fig: Random block access Fig: Memory Layout **Normalized Access Time Comparison** 2.5 1.14 1.56 1.52 1.07 1.05 1.5 0.5 **Swaptions** Blackscholes **Bodytrack** Dedup **Ferret** Baseline Optimized Improvement

This work has been supported by AFRL under Grant number FA 8750-15-1-0185