Locally Repairable Codes
Dimitris S. Papailiopoulos and Alexandros G. Dimakis

Big Data
- Big Data Players (Facebook, Amazon, Google, Yahoo, ...)
- FB has the biggest Hadoop cluster (B0PB)

- Failures are the norm.
- We need to protect the data: **Introduce redundancy**

Reliability: Replication vs. Codes
- \((n,k) \)-MDS codes have optimal reliability for given storage
- 8% of Facebook Archival storage uses coding (most is still 3x replication)
- Plans to code 50% of archival data

MDS-Codes: Pros & Cons

<table>
<thead>
<tr>
<th>Time</th>
<th>Repair Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri</td>
<td>4 PB</td>
</tr>
<tr>
<td>Mon</td>
<td>6 PB</td>
</tr>
<tr>
<td>Wed</td>
<td>5 PB</td>
</tr>
<tr>
<td>Thu</td>
<td>4 PB</td>
</tr>
</tbody>
</table>

Metrics of interest:
- Bits communicated for repair
- Bits read for repairs
- Locality = Number of Nodes used during repair.

The Code Repair Problem
- A node is lost: We need to exactly repair it.
- Practice: ALL nodes are contacted,
 everything is downloaded for repair (Hadoop)
 (matrix inversions take place)

Naive repair:
1. generates enormous communication
2. accesses a great number of nodes

Locally Repairable Codes

Tradeoff between Locality- Reliability?

Implementing LRC
[Sathiamoorthy, Asteris, P, Dimakis, facebook]
- LRC was tested on Facebook clusters and Amazon ec2 clusters (100 machines).
- Reduces disk IO and network bandwidth by approximately 2x
- Available online (Apache licence)

Under testing for use in production at Facebook.