
RiverSwarm: Topology-Aware Distributed Planning for Obstacle
Encirclement in Connected Robotic Swarms

pradiptg@usc.edu,	
 jgao@cs.stonybrook.edu,	
 gasparri@dia.uniroma3.it,	
 bkrishna@usc.edu	
 	
 	
 	
 	
 	

Proposed Solution
•  Run a global connectivity maintenance

algorithm
•  Use the Gauss Bonnet theorem based

technique to detect if the swarm has encircled
an obstacle

•  If needed disconnect the swarm from the rear
of the obstacle

Problem Introduction
Scenario: Collective behavior of a robotic swarm
moving in a cluttered environment.

Challenges:

•  Disconnection: network partitioning
•  Inefficiency in movement due to connectivity

constraints

Pradipta Ghosh, Jie Gao, Andrea Gasparri and Bhaskar Krishnamachari

Global	
 Connec+vity	
 Maintenance
•  Describe the network topology through the

Laplacian matrix
•  Relate the gradient of the algebraic

connectivity to the robots locations
•  Design a control law to maximize this gradient
•  It can be computed in a distributed fashion

The	
 Gauss	
 Bonnet	
 Theorem
The total curvature of a surface is a
topological invariance:

where:
 is the Gaussian Curvature of the surface

 is the Euler Characteristics of the surface

C(M) = 2πχ (M)

M

C(M)
χ (M)

Algorithm Steps

 Obstacle Encirclement Obstacle Detection

 Initiate Detach Obstacle Passed

C(M) = C(i)
viεV
∑

C(i)

C(i) = π − θi (k)
k
∑

Interior Vertex

Obstacle/Hole Detection
•  Perform Delaunay Triangulation of the

network topology
•  Now, the Euler characteristic is:

 with number of holes in the network

•  The Gaussian curvature of the Delaunay
Triangulation is:

where is the Gaussian Curvature at
vertex i

•  Combining them

χ (M) = 2− Z

Z

C(i)
viεV
∑ = 2π (2− Z)

In our case:
•  The Gaussian Curvature at vertex i is

computed as:

2

1

C(i)

C(i) = 2π − θi (k)
k
∑

Boundary Vertex

θi (k)With the corner angle of the kth triangle
to vertex i is adjacent to

C(1) = π − θ1(k)

k=1

4

∑ = π − 4× π
3
= (−π

3
)

C(2) = 2π − θ2 (k)
k=1

5

∑ = 2π − 5× π
3
=
π
3

Future	
 Works
•  Design a distributed control law with provable theoretical guarantees
•  Validation on a real test-bed scenario

