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Proposed Solution 
•  Run a global connectivity maintenance 

algorithm  
•  Use the Gauss Bonnet theorem based 

technique to detect if the swarm has encircled 
an obstacle 

•  If needed  disconnect  the swarm from the rear 
of the obstacle 

Problem Introduction 
Scenario:  Collective behavior of a robotic swarm 
moving in a cluttered environment. 
 
Challenges: 

•  Disconnection: network partitioning 
•  Inefficiency in movement due to connectivity 

constraints 
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Global	
  Connec+vity	
  Maintenance 
•  Describe the network topology through the 

Laplacian matrix 
•  Relate the gradient of the algebraic 

connectivity to the robots locations 
•  Design a control law to maximize this gradient 
•  It can be computed in a distributed fashion 

The	
  Gauss	
  Bonnet	
  Theorem 
The total curvature of a surface        is a 
topological invariance: 
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         is the Gaussian Curvature of the surface 
 

         is the Euler Characteristics of the surface 
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Obstacle/Hole Detection 
•  Perform Delaunay Triangulation of the 

network topology 
•  Now, the Euler characteristic is: 
                        
 
     with        number of holes in the network 

•  The Gaussian curvature of the Delaunay 
Triangulation is: 

 
 

where         is the Gaussian Curvature at 
vertex i 
 

•  Combining them 
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In our case: 
•  The Gaussian Curvature         at vertex i is 

computed as: 
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θi (k)With            the corner angle of the kth triangle 
to vertex i is adjacent to 
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Future	
  Works 
•  Design a distributed control law with provable theoretical guarantees 
•  Validation on a real test-bed scenario 


