Ming Hsieh Department of Electrical Engineering

Picture-in-Picture Copy Detection Using Spatial Coding Techniques Sanjay Purushotham, C.-C. Jay Kuo

School of Engineering

Abstract

- Picture-in-Picture (PiP) is a useful service to watch two or more videos simultaneously, however it can be exploited to visually hide one (or more) video(s) inside another video
- Today's copy detection techniques can be easily fooled by PiP, which is reflected in the poor results in TRECVID competitions
- Inspired by partial image matching, we propose a novel generalized spatial coding scheme and efficient spatial verification algorithms to address PiP copy detection

Motivation

- PiP video key-frame copy detection can be seen as partial-duplicate image patch matching
- Partial duplicate image matching search for partial-duplicate patches between two images/video keyframes

Spatial Coding

Spatial Verification

Proposed Approach

Generalized Log-Polar Spatial Coding

- Visual word is obtained by SIFT descriptor quantization
- Log-polar plot captures 'Shape context' better

- Spatial code Encode relative spatial position and relative orientation between visual words
- Spatial code of V₂ w.r.t V₁ (V₁₂) is given by 01100010
- Spatial Map spatial codes of all visual words

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		V ₁	V ₂	V ₃	V2 27 26
V_2 11011110 0 11011110 V_3 00010011 10011010 0	V ₁	0	10011010	00010111	
V ₃ 00010011 10011010 0 30 31	V ₂	11011110	0	11011110	21 24 29 22 3 ₂₃ 32
	V ₃	00010011	10011010	0	30 31

 Spatial layout comparison between query and target video key-frames

Polynomial Algorithms

Inconsistency Sum Method (ISM) Spatial Maps comparison

$$V(i, j) = M_{query}(i, j) \oplus M_{t \arg et}(i, j)$$

Inconsistency Sum for each feature

$$(i) = \sum_{i} V(i, j)$$

Removal of false matches

```
\Rightarrow i^* = \arg \max S(i) \qquad \forall S(i) \neq 0
```

Spatial Verification

Non-Polynomial Algorithms

Maximum Clique Problem (MCP) Approach

- Formulate spatial verification as finding the maximum clique in an undirected graph
- Find spatial maps (S_P and S_Q) of *target (P)* and *query (Q)* images
- Convert $S_{diff} = S_P \bigoplus S_Q$ into an adjacency matrix
- S_{diff} can be visualized as a graph, with '1' representing edges and visual words representing vertices
- All true matches implies edges in a graph, therefore, maximum clique implies all consistent true matches

Experiments

Experimental setup

- Datasets
- Small -120 TRECVID 2010 videos indexed (10~30s)
- Large (MSRA v2.0 + TRECVID 2010) 12,650+ videos (~10s to 4 min)
- ➡ Testing dataset (10~30 s) -
- T2 query, T9 query, T10 query 120 videos each
- Comparison: Bag-of-visual-words using vocabulary Tree
- Metrics: (a) mAP, (b) mean processing time for query frame

Results

T9 Query (small dataset)

this is a concorrect re	detekting	Mean F
T9 Query	T10 Query	-
50 100 150		-
	TP Query	<image/>

0.2 LP-MCF 0 rank10 rank25 rank50 rank100	0.2 UB UB UB UB UB UB UB UB UB UB	5 rank50 rank100	
Top-N Results → T10 Query (small dataset)	Top-N Results → T2 Query (large dataset)		
Spatial Verification	Complexity	Avg. time	
Inconsistency Sum Method (ISM)	O(n ³)	2 seconds	
MCP approach: Bron–Kerbosch algorithm	O(3 ^{n/3})	0.5 seconds	

Conclusions

Contribution

- Generalized Log-Polar Spatial Codes to jointly encode relative spatial positions & orientations
- Spatial Verification Algorithms: Efficient spatial layout comparison

Future work

- Feasibility of MCP approach for large graphs
- Video-level comparison instead of key-frame comparison
- [1] S. Purushotham, Q. Tian, C.-C.J. Kuo, "Picture-in-Picture Copy Detection Using Spatial Coding Techniques", ACM MM, AIEMPro Workshop, Scottsdale, Arizona, USA
- [2] W. Zhou, Y. Lu, H. Li, Y. Song, and Q. Tian, "Spatial Coding for Large Scale Partial-Duplicate Web Image Search", ACM Multimedia, Firenze, Italy, October 25~29, 2010

Ming Hsieh Department of Electrical Engineering

Contact information: Sanjay Purushotham, Email: spurusho@usc.edu