

Nested Sparse Approximation: Structured Estimation of V2V Channels Using Geometry-Based Stochastic Channel Model

Sajjad Beygi, , Erik G. Ström*, Urbashi Mitra

Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA *Chalmers University of Technology, Dept. of Signals and Systems, Gothenburg, Sweden {beygihar, ubli}@usc.edu and erik.strom@chalmers.se

Motivation: V2V channels Estimation

Application:

- Traffic safety
- Intelligent transportation

• Higher speeds

Channel Ingredients :

• *line-of-sight* (LOS) • Discrete Components

Geometry-Based Stochastic Model

Delay-Doppler Representation

- (a) Mobile Discrete (MD) components
 - (e.g.: other vehicles,)
- (b) Static Discrete (SD) Components
- (e.g.: Large traffic signs,)
- *Diffuse Components* (all other components)

Prior Arts:

- Least-Square (Unstructured)
- Adaptive Low Rank Wiener Filtering (High Complexity)
- Compressed Sensing using basis pursuit (Mismatching, ...)
- Hybrid Sparse diffuse model (Information complexity)

GBSM: For any ensemble of point scatters with V2V channel statistical properties, compute its contribution at the receiver

Delay (Specific ensemble):

• **Doppler Shift (Specific ensemble):**

$$\nu\left(\theta_t, \theta_r\right) = \frac{1}{\lambda}\left[\left(v_T - v_P\right)\cos\theta_t + \left(v_R - v_P\right)\cos\theta_r\right]$$

- Huge area with zero/small value components
- Symmetry of Diffuse scatterers contribution
- Diffuse components follow exponential profile (Delay wise)
- Sparse Region = Mobile Discrete Scatterers
- Sparse Components = All Discrete components
- Sparse Components exist in all Three Regions

Pulse Shape/Leakage Effect

 $p_t(t)$: Interpolating Filter $p_r(t)$

Leakage Effect Template Computation

 $H_i[k,m] = a_i \delta[m-m_i]\delta[k-k_i]$ **True Channel:** Leaked Channel: $H_{l,i}[k,m] = a_i L_{\tau} [m - m_i] L_{\nu} [k - k_i]$

Nest Sparse Approximation

Convert 2D Channel to 1D Channel vector:

group-wise sparsity.

School of Engineering

