
Novel Codes for Cloud Storage
Maheswaran Sathiamoorthy*, Megasthenis Asteris*,

             Dimitris Papailiopoulos*, Alexandros G. Dimakis*,  
Ramkumar Vadali**, Scott Chen**, Dhruba Borthakur**

* - USC, ** - Facebook

msathiam@usc.edu
*-code opensourced at http://github.com/madiator/hadoop-20

Cloud Storage Erasure Coding

Replication Coded Storage

Xorbas

Experiments and Results

Facebook clusters

• Thousands of machines in data centers
• Failure is the norm rather than the 

exception
• To provide reliability, replication is used.

• each file is stored multiple times 
(generally thrice).

• replication costly, so could coding be 
an alternative?

• Hadoop: Distributed storage system, 
widely used. 

A
X1

X2

A1

A2

A3

A4

Split into
k blocks

Code into
n blocks

(n,k) = (4,2)

A1

A2

A3

A4

X1

X2

X1

X1

X2

X2

  +

+ 2

Example Code

=

=

=

=

(n,k) coding: 
•Split file in k blocks and then code into n blocks
•Any k of the n blocks enough to recover the file
•e.g.: Reed Solomon codes

failure

Node 1

X1

Node 2

X2

Node 3

X1

Node 4

X2

Node 5

X1

Node 6

X2

New Node

X1

Can tolerate 2 failures
Storage overhead: 200%
Repair overhead: 0%

failure

New Node

Node 1

A1

Node 2

A2

Node 3

A3

Node 4

A4

Can tolerate 2 failures
Storage overhead: 100%
Repair overhead: 100%

A1

3x Replication (4,2) Coding
The Repair 
Problem:

(n,k) code requires
k blocks to be
read for repairing
one block

•Lower storage
•Higher reliability

The Good

The Bad
•Difficult to implement
•HDFS-RAID: solved!

The Ugly
•Repair Problem!

• Facebook has one of the largest 
Hadoop clusters
• >3000 machines
• >30 PB logical data

• 3x replication costly
• Facebook uses HDFS-RAID with 

(14, 10) Reed Solomon Code which 
we will call HDFS-RS. 

• Every lost block needs 10 more 
blocks for repair!

• Network is bottlenecked
• So only 8% of cold data is encoded

with 10 data blocks X
1

, X
2

, . . . , X
10

and use a (10, 4)
Reed-Solomon over a binary extension field F

2

m to con-
struct 4 parity blocks P

1

, P
2

, . . . , P
4

. This is the code
currently used in X production clusters that can toler-
ate any 4 block failures due to the RS parities. The
basic idea of LRCs is very simple: we make repair e�-
cient by adding additional local parities. This is shown
in figure 2.

5 file blocks 4 RS parity blocks5 file blocks

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

P
1

P
2

P
3

P
4

S
1

S
2

S
3

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
10 c0

1

c0
2

c0
3

c0
4

c0
5

c0
6

local parity block implied parity blocklocal parity block

Figure 2: Locally repairable code implemented in
HDFS-Xorbas. The four parity blocks P

1

, P
2

, P
3

, P
4

are
constructed with a standard RS code and the local par-
ities provide e�cient repair in the case of single block
failures.

By adding the local parity S
1

= c
1

X
1

+c
2

X
2

+c
3

X
3

+
c
4

X
5

, a single block failure can be repaired by access-
ing only 5 other blocks. For example, if block X

3

is lost
(or degraded read while unavailable) it can be recon-
structed by

X
3

= c�1

3

(S
1

� c
1

X
1

� c
2

X
2

� c
4

X
4

� c
5

X
5

). (1)

The multiplicative inverse of the field element c
3

ex-
ists as long as c

3

6= 0 which is the requirement we will
enforce for all the local parity coe�cients. It turns out
that the coe�cients ci can be selected to guarantee that
all the linear equations will be linearly independent. In
the Appendix we present a randomized and a deter-
ministic algorithm to construct such coe�cients. We
emphasize that the complexity of the deterministic al-
gorithm is exponential in the code parameters (n, k) and
therefore useful only for small code constructions.

The disadvantage of adding these local parities is the
extra storage requirement. While the original RS code
was storing 14 blocks for every 10, the three local pari-
ties increase the storage overhead into 17/10. There is
one additional optimization that we can perform: We
show that the coe�cients c

1

, c
2

, . . . c
10

can be chosen so
that the local parities satisfy an additional alignment
equation S1 + S2 + S3 = 0. We can therefore not store
the local parity S

3

and instead consider it an implied
parity. Note that to obtain this in the figure, we set
c0
5

= c0
6

= 1.
When a single block failure happens in a RS parity,

the implied parity can be reconstructed and used to

repair that failure. For example, if P
2

is lost, it can
be recovered by reading 5 blocks P

1

, P
3

, P
4

, S
1

, S
2

and
solving the equation

P
2

= (c0
2

)�1(�S
1

� S
2

� c0
1

P
1

� c0
3

P
3

� c0
4

P
4

). (2)

In our theoretical analysis we show how to find non-
zero coe�cients ci (that must depend on the parities Pi

but are not data dependent) for the alignment condi-
tion to hold. We also show that for the Reed-Solomon
code implemented in HDFS RAID, choosing ci = 1 and
therefore performing simple XOR operations is su�-
cient. We further prove that this code has the largest
possible distance (d = 5) for this given locality r = 5
and blocklength n = 16.

3. SYSTEM DESCRIPTION
HDFS-RAID is an open source module that imple-

ments RS encoding and decoding over Apache Hadoop [3].
It provides a Distributed Raid File system (DRFS) that
runs above HDFS. Files stored in DRFS are divided into
stripes, i.e., groups of several blocks. For each stripe, a
number of parity blocks are calculated and stored as a
separate, parity file corresponding to the original file.
HDFS-RAID is implemented in Java (approximately
12,000 lines of code) and is currently used in produc-
tion by several organizations, including social network
X.

The module consists of several components, among
which RaidNode and BlockFixer are the most relevant
here:
• The RaidNode is a daemon responsible for the cre-

ation and maintenance of parity files for all data files
stored in the DRFS. One node in the cluster is gen-
erally designated to run the RaidNode. The dae-
mon periodically scans the HDFS file system and de-
cides whether a file is to be RAIDed or not, based
on its size and age. In large clusters, RAIDing is
done in a distributed manner by assigning MapRe-
duce jobs to nodes across the cluster. After encoding,
the RaidNode lowers the replication level of RAIDed
files to one.

• The BlockFixer is a separate process that runs at
the RaidNode and periodically checks for lost or cor-
rupted blocks among the RAIDed files. When blocks
are tagged as lost or corrupted, the BlockFixer re-
builds them using the surviving blocks of the stripe,
again, by dispatching repair MapReduce jobs.

Both RaidNode and BlockFixer rely on an underlying
component: ErasureCode. ErasureCode implements the
erasure encoding/decoding functionality. In X’s HDFS-
RAID, an RS (10, 4) erasure code is implemented through
ErasureCode (4 parity blocks are created for every 10
data blocks).

3.1 HDFS-Xorbas

4

1( 62) 1( 71) 1( 71) 1( 64) 3(182) 3(209) 2(138) 2(145)0

50

100

150

H
D

FS
 B

yt
es

 R
ea

d 
(G

B)

Failure events − # of lost DataNodes (Lost Blocks)
 

 

HDFS−RS
HDFS−Xorbas

(a) HDFS Bytes Read per failure event.

1( 62) 1( 71) 1( 71) 1( 64) 3(182) 3(209) 2(138) 2(145)0

50

100

150

200

250

300

Ne
tw

or
k 

O
ut

 T
ra

ffi
c 

(G
B)

Failure events − # of lost DataNodes (Lost Blocks)
 

 

HDFS−RS
HDFS−Xorbas

(b) Network Out Tra�c per failure event.

1( 62) 1( 71) 1( 71) 1( 64) 3(182) 3(209) 2(138) 2(145)0

10

20

30

40

50

60

R
ep

ai
r D

ur
at

io
n 

(M
in

ut
es

)

Failure events − # of lost DataNodes (Lost Blocks)
 

 

HDFS−RS
HDFS−Xorbas

(c) Repair duration per failure event.

Figure 4: The metrics measured during the 200 file experiment. Network-in is similar to Network-out and so it is not
displayed here. During the course of the experiment, we simulated eight failure events and the x-axis gives details
of the number of DataNodes terminated during each failure event and the number of blocks lost are displayed in
parentheses.

tinct events to be isolated. For example in Fig. 4 and
Fig. 5a we present measurements from the 200 file ex-
periment. The other experiments involving 50 and 100
files produce similar results and are not shown. The
measurements of all the experiments are combined in
Figure 6.

For every failure event, while selecting DataNodes to
be terminated for each cluster, we made sure that the
total number of blocks lost were roughly the same for
both clusters. We followed this choice because our ob-
jective was to compare the two systems for each block
lost. However, since Xorbas has an additional storage
overhead, a random failure event would in expectation,
lead to loss of 14.3% more blocks in Xorbas compared
to RS. In any case, results can be adjusted to take this
into account, without significantly a↵ecting the gains
observed in our experiments.

Finally, in Figure 6, we present the measurements of
HDFS bytes read, network tra�c and repair duration
versus the number of blocks lost, for all three experi-
ments carried out in EC2. We also plot the linear least
squares fitting curve for these measurements.

5.2.1 HDFS Bytes Read
Figure 4a depicts the total number of HDFS bytes

read by the BlockFixer jobs initiated during each fail-
ure event. The bar plots show that HDFS-Xorbas reads
41% � 52% the amount of data that RS reads to re-
construct the same number of lost blocks. These mea-
surements are consistent with the theoretically expected
values, given that more than one blocks per stripe are
occasionally lost (note that 12.14/5 = 41%). In Fig-
ure 6a it is shown that the number of HDFS bytes read
is linearly dependent on the number of blocks lost, as
expected. The slopes give us the average number of
HDFS bytes read per block for Xorbas and HDFS-RS.
The average number of blocks read per lost block are

estimated to be 11.5 and 5.8, showing the 2⇥ benefit of
HDFS-Xorbas.

5.2.2 Network Traffic
Figure 4b depicts the network tra�c produced by the

BlockFixer jobs during the entire repair procedure. In
particular, it shows the outgoing network tra�c pro-
duced in the cluster, aggregated across instances. In-
coming network tra�c is similar since the cluster only
communicates information internally. Throughout our
experiments, we consistently observed that network traf-
fic was roughly equal to twice the number of bytes read.
Therefore, gains in the number of HDFS bytes read, im-
mediately translate to network tra�c gains. In Figure
5a, we present the Network Tra�c plotted continuously
during the course of the 200 file experiment, with a
5-minute resolution. The sequence of failure events is
clearly visible. The fact that the tra�c peaks of the two
systems are di↵erent is an indication that the available
bandwidth was not saturated. However, the bottleneck
in MapReduce tasks is reportedly the network [5, 16,
17]. This is due to the fact that when the amount of
data increases, more MapReduce tasks need to run in
parallel, draining network resources. In these large scale
environments, link saturation is expected to limit the
data transfer rates and we expect higher recovery times
for HDFS-RS.

5.2.3 Repair Duration
Figure 4c depicts the total duration of the recov-

ery procedure i.e., the interval from the launch time
of the first block fixing job to the termination of the
last one. Combining measurements from all the exper-
iments, Figure 6c shows the repair duration versus the
number of blocks repaired. These figures show that Xor-
bas finishes 25% to 45% faster than HDFS-RS. This is
primarily due to the reduced amount of data that need

7

1( 62) 1( 71) 1( 71) 1( 64) 3(182) 3(209) 2(138) 2(145)0

50

100

150

H
D

FS
 B

yt
es

 R
ea

d 
(G

B)

Failure events − # of lost DataNodes (Lost Blocks)
 

 

HDFS−RS
HDFS−Xorbas

(a) HDFS Bytes Read per failure event.

1( 62) 1( 71) 1( 71) 1( 64) 3(182) 3(209) 2(138) 2(145)0

50

100

150

200

250

300

Ne
tw

or
k 

O
ut

 T
ra

ffi
c 

(G
B)

Failure events − # of lost DataNodes (Lost Blocks)
 

 

HDFS−RS
HDFS−Xorbas

(b) Network Out Tra�c per failure event.

1( 62) 1( 71) 1( 71) 1( 64) 3(182) 3(209) 2(138) 2(145)0

10

20

30

40

50

60

R
ep

ai
r D

ur
at

io
n 

(M
in

ut
es

)

Failure events − # of lost DataNodes (Lost Blocks)
 

 

HDFS−RS
HDFS−Xorbas

(c) Repair duration per failure event.

Figure 4: The metrics measured during the 200 file experiment. Network-in is similar to Network-out and so it is not
displayed here. During the course of the experiment, we simulated eight failure events and the x-axis gives details
of the number of DataNodes terminated during each failure event and the number of blocks lost are displayed in
parentheses.

tinct events to be isolated. For example in Fig. 4 and
Fig. 5a we present measurements from the 200 file ex-
periment. The other experiments involving 50 and 100
files produce similar results and are not shown. The
measurements of all the experiments are combined in
Figure 6.

For every failure event, while selecting DataNodes to
be terminated for each cluster, we made sure that the
total number of blocks lost were roughly the same for
both clusters. We followed this choice because our ob-
jective was to compare the two systems for each block
lost. However, since Xorbas has an additional storage
overhead, a random failure event would in expectation,
lead to loss of 14.3% more blocks in Xorbas compared
to RS. In any case, results can be adjusted to take this
into account, without significantly a↵ecting the gains
observed in our experiments.

Finally, in Figure 6, we present the measurements of
HDFS bytes read, network tra�c and repair duration
versus the number of blocks lost, for all three experi-
ments carried out in EC2. We also plot the linear least
squares fitting curve for these measurements.

5.2.1 HDFS Bytes Read
Figure 4a depicts the total number of HDFS bytes

read by the BlockFixer jobs initiated during each fail-
ure event. The bar plots show that HDFS-Xorbas reads
41% � 52% the amount of data that RS reads to re-
construct the same number of lost blocks. These mea-
surements are consistent with the theoretically expected
values, given that more than one blocks per stripe are
occasionally lost (note that 12.14/5 = 41%). In Fig-
ure 6a it is shown that the number of HDFS bytes read
is linearly dependent on the number of blocks lost, as
expected. The slopes give us the average number of
HDFS bytes read per block for Xorbas and HDFS-RS.
The average number of blocks read per lost block are

estimated to be 11.5 and 5.8, showing the 2⇥ benefit of
HDFS-Xorbas.

5.2.2 Network Traffic
Figure 4b depicts the network tra�c produced by the

BlockFixer jobs during the entire repair procedure. In
particular, it shows the outgoing network tra�c pro-
duced in the cluster, aggregated across instances. In-
coming network tra�c is similar since the cluster only
communicates information internally. Throughout our
experiments, we consistently observed that network traf-
fic was roughly equal to twice the number of bytes read.
Therefore, gains in the number of HDFS bytes read, im-
mediately translate to network tra�c gains. In Figure
5a, we present the Network Tra�c plotted continuously
during the course of the 200 file experiment, with a
5-minute resolution. The sequence of failure events is
clearly visible. The fact that the tra�c peaks of the two
systems are di↵erent is an indication that the available
bandwidth was not saturated. However, the bottleneck
in MapReduce tasks is reportedly the network [5, 16,
17]. This is due to the fact that when the amount of
data increases, more MapReduce tasks need to run in
parallel, draining network resources. In these large scale
environments, link saturation is expected to limit the
data transfer rates and we expect higher recovery times
for HDFS-RS.

5.2.3 Repair Duration
Figure 4c depicts the total duration of the recov-

ery procedure i.e., the interval from the launch time
of the first block fixing job to the termination of the
last one. Combining measurements from all the exper-
iments, Figure 6c shows the repair duration versus the
number of blocks repaired. These figures show that Xor-
bas finishes 25% to 45% faster than HDFS-RS. This is
primarily due to the reduced amount of data that need

7

Experiments over 50 node clusters
from Amazon S3

Bytes read from the system for repair
Network used for repair

The Verdict
•Use 14% more storage as compared to RS (14, 10) 
code
•But repair uses

•half the network
•and half the disk

•Also provides better reliability!

Locally Repairable Codes (LRC)•LRC Codes to the rescue!
•Facebook’s HDFS-RAID is 
open source. 

•We used it to develop our own 
version of Hadoop called 
HDFS-Xorbas*, which 
implements LRC codes

•We use a (14, 10, 2) LRC Code
•2/14 = 14% extra storage

•but mitigates the repair 
problem

LRC (14,10,2) Recipe:
•Split file into 10 blocks
•Then create 4 extra parity blocks using Reed Solomon encoding
•Use the first 5 and second 5 file blocks to create 2 “local parity blocks” S1 & S2
•One lost block requires only 5 others blocks to be read. 

has to download only
those blocks that were lost

has to download other coded blocks
to reconstruct the lost blocks

mailto:msathiam@usc.edu
mailto:msathiam@usc.edu
http://github.com/madiator/hadoop-20
http://github.com/madiator/hadoop-20

