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Accurate Passive Location Estimation
Using TOA Measurements

Junyang Shen, Andreas F. Molisch, Fellow, IEEE, and Jussi Salmi, Member, IEEE

Abstract—Localization of objects is fast becoming a major
aspect of wireless technologies, with applications in logistics,
surveillance, and emergency response. Time-of-arrival (TOA)
localization is ideally suited for high-precision localization of
objects in particular in indoor environments, where GPS is not
available. This paper considers the case where one transmitter
and multiple, distributed, receivers are used to estimate the
location of a passive (reflecting) object. It furthermore focuses
on the situation when the transmitter and receivers can be
synchronized, so that TOA (as opposed to time-difference-of-
arrival (TDOA)) information can be used. We propose a novel,
Two-Step estimation (TSE) algorithm for the localization of the
object. We then derive the Cramer-Rao Lower Bound (CRLB)
for TOA and show that it is an order of magnitude lower than the
CRLB of TDOA in typical setups. The TSE algorithm achieves
the CRLB when the TOA measurements are subject to small
Gaussian-distributed errors, which is verified by analytical and
simulation results. Moreover, practical measurement results show
that the estimation error variance of TSE can be 33 dB lower
than that of TDOA based algorithms.

Index Terms—TOA, TDOA, location estimation, CRLB.

I. INTRODUCTION

OBJECT location estimation has recently received inten-
sive interests for a large variety of applications. For

example, localization of people in smoke-filled buildings can
be life-saving [1]; positioning techniques also provide useful
location information for search-and-rescue [2], logistics [3],
and security applications such as localization of intruders [4].

A variety of localization techniques have been proposed in
the literature, which differ by the type of information and
system parameters that are used. The three most important
kinds utilize the received signal strength (RSS) [5], angle of
arrival (AOA) [6], and signal propagation time [7], [8], [9],
respectively. RSS algorithms use the received signal power for
object positioning; their accuracies are limited by the fading of
wireless signals [5]. AOA algorithms require either directional
antennas or receiver antenna arrays 1. Signal-propagation-time
based algorithms estimate the object location using the time
it takes the signal to travel from the transmitter to the target
and from there to the receivers. They achieve very accurate
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1Note that AOA does not provide better estimation accuracy than the signal

propagation time based methods [10].

estimation of object location if combined with high-precision
timing measurement techniques [11], such as ultrawideband
(UWB) signaling, which allows centimeter and even sub-
millimeter accuracy, see [12], [13], and Section VII. Due
to such merits, the UWB range determination is an ideal
candidate for short-range object location systems and also
forms the basis for the localization of sensor nodes in the
IEEE 802.15.4a standard [14].

The algorithms based on signal propagation time can be fur-
ther classified into Time of Arrival (TOA) and Time Difference
of Arrival (TDOA). TOA algorithms employ the information
of the absolute signal travel time from the transmitter to the
target and thence to the receivers. The term “TOA” can be used
in two different cases: 1) there is no synchronization between
transmitters and receivers and then clock bias between them
exist; 2) there is synchronization between transmitters and
receivers and then clock bias between them does not exist.
In this paper, we consider the second situation with the
synchronization between the transmitter and receivers. Such
synchronization can be done by cable connections between
the devices, or sophisticated wireless synchronization algo-
rithms [15]. TDOA is employed if there is no synchronization
between the transmitter and the receivers. In that case, only
the receivers are synchronized. Receivers do not know the
signal travel time and therefore employ the difference of signal
travel times between the receivers. It is intuitive that TOA has
better performance than the TDOA, since the TDOA loses
information about the signal departure time [7].

The TDOA/TOA positioning problems can furthermore be
divided into “active” and “passive” object cases. “Active”
means that the object itself is the transmitter, while “passive”
means that it is not the transmitter nor receiver, but a separate
(reflecting/scattering) object that just interacts with the signal
stemming from a separate transmitter 2.

There are numerous papers on the TOA/TDOA location
estimation for “active” objects. Regarding TDOA, the two-
stage method [16] and the Approximate Maximum Likelihood
Estimation [17] are shown to be able to achieve the Cramer-
Rao Lower Bound (CRLB) of “active” TDOA [8]. As we
know, the CRLB sets the lower bound of the estimation
error variance of any un-biased method. Two important TOA
methods of “active” object positioning are the Least-Square
Method [18] and the Approximate Maximum Likelihood Es-
timation Method [17], both of which achieve the CRLB of
“active” TOA. “Active” object estimation methods are used,
e.g, for cellular handsets, WLAN, satellite positioning, and
active RFID.

2The definitions of “active” and “passive” here are different from those in
radar literature. In radar literature, “passive radar” does not transmit signals
and only detects transmission while “active radar” transmits signals toward
targets.
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“Passive” positioning is necessary in many practical situa-
tions like crime-prevention surveillance, assets tracking, and
medical patient monitoring, where the target to be localized
is neither transmitter nor receiver, but a separate (reflect-
ing/scattering) object. The TDOA positioning algorithms for
“passive” objects are essentially the same as for “active”
objects. For TOA, however, the synchronization creates a
fundamental difference between “active” and “passive” cases.
Regarding the “passive” object positioning, to the best of our
knowledge, no TOA algorithms have been developed. This
paper aims to fill this gap by proposing a TOA algorithm for
passive object location estimation, which furthermore achieves
the CRLB of “passive” TOA. The key contributions are:

• A novel, two step estimation (TSE) method for the passive
TOA based location estimation. It borrows an idea from
the TDOA algorithm of [16].

• CRLB for passive TOA based location estimation. When
the TOA measurement error is Gaussian and small, we
prove that the TSE can achieve the CRLB. Besides, it is
also shown that the estimated target locations by TSE are
Gaussian random variables whose covariance matrix is
the inverse of the Fisher Information Matrix (FIM) related
to the CRLB. We also show that in typical situations the
CRLB of TOA is much lower than that of TDOA.

• Experimental study of the performances of TSE. With
one transmitter and three receivers equipped with UWB
antennas, we perform 100 experimental measurements
with an aluminium pole as the target. After extracting
the signal travel time by high-resolution algorithms, the
location of the target is evaluated by TSE. We show that
the variance of estimated target location by TSE is much
(33dB) lower than that by the TDOA method in [16].

The remainder of this paper is organized as follows. Section
II presents the architecture of positioning system. Section III
derives the TSE, followed by comparison between CRLB
of TOA and TDOA algorithms in Section IV. Section V
analyzes the performance of TSE. Section VI presents the
simulations results. Section VII evaluates the performance of
TSE based on UWB measurement. Finally Section VIII draws
the conclusions.

Notation: Throughout this paper, a variable with “hat”
•̂ denotes the measured/estimated values, and the “bar” •̄
denotes the mean value. Bold letters denote vectors/matrices.
E(•) is the expectation operator. If not particularly specified,
“TOA” in this paper denotes the “TOA” for a passive object.

II. ARCHITECTURE OF LOCALIZATION SYSTEM

In this section, we first discuss the challenges of localization
systems, and present the focus of this paper. Then, the system
model of individual localization is discussed.

A. Challenges for target localization

For easy understanding, we consider an intruder localization
system using UWB signals. Note that the intruder detection
can also be performed using other methods such as the
Device-free Passive (DfP) approach [19] and Radio Frequency
Identification (RFID) method [20]. However, both the DfP
and RFID methods are based on preliminary environmental

measurement information like “Radio Map Construction” [19]
and “fingerprints” [20]. On the other hand, the TOA based
approach considered in our framework does not require the
preliminary efforts for obtaining environmental information.

With this example, we show the challenges of target po-
sitioning system: Multiple Source Separation, Indirect Path
Detection and Individual Target Localization.

The intruder detection system localizes, and then directs a
camera to capture the photo of the targets (intruders). This
localization system consists of one transmitter and several
receivers. The transmitter transmits signals which are reflected
by the targets, then, the receivers localize the targets based on
the received signals.

Multiple Source Separation: If there are more than one
intruders, the system needs to localize each of them. With
multiple targets, each receiver receives impulses from several
objects. Only the information (such as TOA) extracted from
impulses reflected by the same target should be combined
for localization. Thus, the Multiple Source Separation is very
important for target localization and several techniques have
been proposed for this purpose. In [21], a pattern recognition
scheme is used to perform the Multiple Source Separation.
Video imaging and blind source separation techniques are
employed for target separation in [22].

Indirect Path Detection: The transmitted signals are not
only reflected by the intruders, but also by surrounding
objects, such as walls and tables. To reduce the adverse
impact of non-target objects in the localization of target,
the localization process consists of two steps. In the
initial/first stage, the system measures and then stores the
channel impulses without the intruders. These impulses
are reflected by non-target objects, which is referred to
as reflectors here. The radio signal paths existing without
the target are called background paths. When the intruders
are present, the system performs the second measurement.
To obtain the impulses related to the intruders, the system
subtracts the second measurement with the first one.
The remaining impulses after the subtraction can be
through one of the following paths: a) transmitter-intruders-
receivers, b) transmitter-reflectors-intruders-receivers, c)
transmitter-intruders-reflectors-receivers, d) transmitter-
reflectors-intruders-reflectors-receivers3. The first kind of
paths are called direct paths and the rest are called indirect
paths. In most situations, only direct paths can be used
for localization. In the literature, there are several methods
proposed for indirect path identification [23], [24].

Individual Target Localization: After the Multiple Source
Separation and Indirect Path Detection, the positioning system
knows the signal impulses through the direct paths for each
target. Then, the system extracts the characteristics of direct
paths such as TOA and AOA. Based on these characteristics,
the targets are finally localized. Most researches on Individual
Target Localization assumes that Multiple Source Separation
and Indirect Path Detection are perfectly performed such as
[16], [25] and [26]. Note that the three challenges sometimes

3Note that here we omit the impulses having two or more interactions
with the intruder because of the resulted low signal-to-noise radio (SNR) by
multiple reflections.
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Fig. 1. Illustration of TOA based Location Estimation System Model.

are jointly addressed, so that the target locations are estimated
in one step such as the method presented in [27].

In this paper, we focus on the Individual Target Local-
ization, under the same framework of [16], [25] and [26],
assuming that Multiple Source Separation and Indirect Path
Detection are perfectly performed in prior. In addition, we only
use the TOA information for localization, which achieves very
high accuracy with ultra-wideband signals. The method to ex-
tract TOA information using background channel cancelation
is described in details in [28] and also Section VII.

B. System Model of Individual Localization

For ease of exposition, we consider the passive object
(target) location estimation problem in a two-dimensional
plane as shown in Fig. 1. There is a target whose location
[x, y] is to be estimated by a system with one transmitter and
M receivers. Without loss of generality, let the location of
the transmitter be [0, 0], and the location of the ith receiver
be [ai, bi], 1 ≤ i ≤ M . The transmitter transmits an impulse;
the receivers subsequently receive the signal copies reflected
from the target and other objects. We adopt the assumption
also made in [16], [17] that the target reflects the signal
into all directions. Using (wired) backbone connections be-
tween the transmitter and receivers, or high-accuracy wireless
synchronization algorithms, the transmitter and receivers are
synchronized. The errors of cable synchronization are negli-
gible compared with the TOA measurement errors. Thus, at
the estimation center, signal travel times can be obtained by
comparing the departure time at the transmitter and the arrival
time at the receivers.

Let the TOA from the transmitter via the target to the ith
receiver be ti, and ri = c0ti, where c0 is the speed of light,
1 ≤ i ≤ M . Then,

ri =
√
x2 + y2+

√
(x− ai)2 + (y − bi)2 i = 1, ...M. (1)

For future use we define r = [r1, r2, . . . , rM ]. Assuming
each measurement involves an error, we have

ri − r̂i = ei, 1 ≤ i ≤ M,

where ri is the true value, r̂i is the measured value and ei
is the measurement error. In our model, the indirect paths are

ignored and we assume ei to be zero mean. The estimation
system tries to find the [x̂, ŷ], that best fits the above equations
in the sense of minimizing the error variance

Δ = E[(x̂ − x)2 + (ŷ − y)2]. (2)

Assuming the ei are Gaussian-distributed variables with zero
mean and variances σ2

i , the conditional probability function
of the observations r̂ are formulated as follows:

p(r̂|z) =
N∏
i=1

1√
2πσi

· exp
(

− (r̂i − (
√

x2 + y2 +
√
(x− ai)2 + (y − bi)2))

2

2σ2
i

)
,

(3)

where z = [x, y].

III. TSE METHOD

In this section, we present the two steps of TSE and
summarize them in Algorithm 1. In the first step of TSE, we
assume x, y,

√
x2 + y2 are independent of each other, and

obtain temporary results for the target location based on this
assumption. In the second step, we remove the assumption
and update the estimation results.

A. Step 1 of TSE

In the first step of TSE, we obtain an initial estimate of
[x, y,

√
x2 + y2], which is performed in two stages: Stage

A and Stage B. The basic idea here is to utilize the linear
approximation [16] [29] to simplify the problem, considering
that TOA measurement errors are small with UWB signals.

Let v =
√
x2 + y2, taking the squares of both sides of (1)

leads to

2aix+ 2biy − 2riv = a2i + b2i − r2i .

Since ri − r̂i = ei, it follows that

−a2i + b2i − r̂2i
2

+ aix+ biy − r̂iv

= ei(v − r̂i)− e2i
2

= ei(v − r̂i)−O(e2i ). (4)

where O(•) is the Big O Notation meaning that f(α) =
O(g(α)) if and only if there exits a positive real number M
and a real number α such that

|f(α)| ≤ M |g(α)| for all α > α0.

If ei is small, we can omit the second or higher order terms
O(e2i ) in Eqn (4). In the following of this paper, we do this,
leaving the linear (first order) term. Since there are M such
equations, we can express them in a matrix form as follows

h− Sθθθ = Be+O(e2) ≈ Be, (5)
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where

h =

⎡
⎢⎢⎢⎢⎣

−a2
1+b21−r̂21

2

−a2
2+b22−r̂22

2
...

−a2
M+b2M−r̂2M

2

⎤
⎥⎥⎥⎥⎦ ,

S = −

⎡
⎢⎢⎢⎣

a1 b1 −r̂1
a2 b2 −r̂2

...
aM bM −r̂M

⎤
⎥⎥⎥⎦ ,

θθθ = [x, y, v]T ,

e = [e1,e2, . . . , eM ]T ,

and
B = v · I− diag ([r1, r2, . . . , rM ]) , (6)

where O(e2) = [O(e21),O(e22), ...,O(e2M )]T and diag(a)
denotes the diagonal matrix with elements of vector a on
its diagonal. For notational convenience, we define the error
vector

ϕϕϕ = h− Sθθθ. (7)

According to (5) and (7), the mean of ϕϕϕ is zero, and its
covariance matrix is given by

Ψ = E(ϕϕϕϕϕϕT )

= E(BeeTBT ) + E(O(e2)eTBT )

+ E(BeO(e2)T ) + E(O(e2)O(e2)T )

≈ B̄QB̄T

(8)

where Q = diag [σ2
1 , σ

2
2 , . . . , σ

2
M ]. Because B̄ depends on the

true values r, which are not obtainable, we use B̂ (derived
from the measurements r̂) in our calculations.

From (5) and the definition of ϕϕϕ, it follows that ϕϕϕ is a vector
of Gaussian variables; thus, the probability density function
(pdf) of ϕϕϕ given θθθ is

p(ϕϕϕ|θθθ) ≈ 1

(2π)
M
2 |Ψ| 12 exp(−1

2
ϕϕϕTΨ−1ϕϕϕ)

=
1

(2π)
M
2 |Ψ| 12 exp(−1

2
(h− Sθθθ)TΨ−1(h− Sθθθ)).

Then,

ln
(
p(ϕϕϕ|θθθ)

)
≈ −1

2

(
(h− Sθθθ)TΨ−1(h− Sθθθ)

+ ln |Ψ|
)
− M

2
ln 2π (9)

We assume for the moment that x, y, v are independent
of each other (this clearly non-fulfilled assumption will be
relaxed in the second step of the algorithm). Then, according
to (9), the optimum θθθ that maximizes p(ϕϕϕ|θθθ) is equivalent to
the one minimizing Π = (h − Sθθθ)TΨ−1(h − Sθθθ) + ln |Ψ|.
If Ψ is a constant, the optimum θθθ to minimize Π satisfies
dΠ
dθθθ = 0. Taking the derivative of Π over θθθ, we have

dΠ

dθθθ
= −2STΨ−1h+ 2STΨ−1Sθθθ.

Fig. 2. Illustration of estimation of θθθ in step 1 of TSE.

Thus, the optimum θθθ satisfies

θ̂θθ = argmin
θθθ

{Π} = (STΨ−1S)−1STΨ−1h, (10)

which provides [x̂, ŷ]. Note that (10) also provides the least
squares solution for non-Gaussian errors.

However, for our problem, Ψ is a function of θθθ since B
depends on the (unknown) values [x, y]. For this reason, the
maximum-likelihood (ML) estimation method in (10) can not
be directly used. To find the optimum θθθ, we perform the
estimation in two stages: Stage A and Stage B. In Stage A, the
missing data (Ψ) is calculated given the estimate of parameters
(θθθ). Note that θθθ provides the values of [x, y] and thus the
value of B̂, therefore, Ψ can be calculated using θθθ by (8).
In the Stage B, the parameters (θθθ) are updated according to
(10) to maximize the likelihood function (which is equivalent
to minimizing Π). These two stages are iterated until con-
vergence. Simulations in Section V show that commonly one
iteration is enough for TSE to closely approach the CRLB,
which indicates that the global optimum is reached.

B. Step 2 of TSE

In the above calculations, θ̂θθ contains three components x̂,
ŷ and v̂. They were previously assumed to be independent;
however, x̂ and ŷ are clearly not independent of v̂. As a
matter of fact, we wish to eliminate v̂; this will be achieved
by treating x̂, ŷ, and v̂ as random variables, and, knowing the
linear mapping of their squared values, the problem can be
solved using the LS solution. Let

θ̂θθ =

⎡
⎣ x̂

ŷ
v̂

⎤
⎦ =

⎡
⎣ x+ n1

y + n2

v + n3

⎤
⎦ (11)

where ni (i = 1, 2, 3) are the estimation errors of the first
step. Obviously, the estimator (10) is an unbiased one, and the
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mean of ni is zero. Before proceeding, we need the following
Lemma.

Lemma 1: By omitting the second or higher order errors,
the covariance of θ̂θθ can be approximated as

cov(θ̂θθ) = E(nnT ) ≈ (S̄TΨ−1S̄)−1. (12)

where n = [n1, n2, n3]
T , and Ψ and S̄ (the mean value of

S) use the true/mean values of x, y, and ri.
Proof: Please refer to the Appendix.

Note that since the true values of x, y, and ri are not obtain-
able, we use the estimated/measured values in the calculation
of cov(θ̂θθ).

Let us now construct a vector g as follows

g = Θ̂ΘΘ−GΥ, (13)

where Θ̂ΘΘ = [x̂2, ŷ2, v̂2]T , Υ = [x2, y2]T and

G =

⎡
⎣ 1 0

0 1
1 1

⎤
⎦ .

Note that here Θ̂ΘΘ is the square of estimation result θ̂θθ from
the first step containing the estimated values x̂, ŷ and v̂. Υ
is the vector to be estimated. If Θ̂ΘΘ is obtained without error,
g = 0 and the location of the target is perfectly obtained.
However, the error inevitably exists and we need to estimate
Υ. Recalling that v =

√
x2 + y2, substituting (11) into (13),

and omitting the second-order terms n2
1, n

2
2, n

2
3, it follows that,

g =

⎡
⎣ 2xn1 +O(n2

1)
2yn2 +O(n2

2)
2vn3 +O(n2

3)

⎤
⎦ ≈

⎡
⎣ 2xn1

2yn2

2vn3

⎤
⎦ .

Besides, following similar procedure as that in computing
(8), we have

Ω = E(ggT ) ≈ 4D̄cov(θ̂̂θ̂θ)D̄, (14)

where D̄ = diag ([x̄, ȳ, v̄]). Since x, y are not known, D̄ is
calculated as D̂ using the estimated values x̂, ŷ from the first
step. The vector g can be approximated as a vector of Gaussian
variables. Thus the maximum likelihood estimation of Υ is the
one minimizing (Θ̂ΘΘ−GΥ)TΩ−1(Θ̂ΘΘ−GΥ), expressed by

Υ̂ = (GTΩ−1G)−1GTΩ−1Θ̂ΘΘ. (15)

The value of Ω is calculated according to (14) using the values
of x̂ and ŷ in the first step. Finally, the estimation of target
location z is obtained by

ẑ = [x̂, ŷ] = [±
√
Υ̂1,±

√
Υ̂2], (16)

where Υ̂iis the ith item of Υ, i = 1, 2. To choose the correct
one among the four values in (16), we can test the square error
as follows

χ =

M∑
i=1

(
√
x̂2 + ŷ2 +

√
(x̂ − ai)2 + (ŷ − bi)− r̂i)

2. (17)

The value of z that minimizes χ is considered as the final
estimate of the target location.

In summary, the procedure of TSE is listed in Algorithm 1:
Note that one should avoid placing the receivers on a line,

since in this case (STΨ−1S)−1 can become nearly singular,
and solving (10) is not accurate.

Algorithm 1 TSE Location Estimation Method
1. In the first step, use algorithm as shown in Fig. 2 to obtain
θ̂θθ,
2. In the second step, use the values of x̂ and ŷ from θ̂θθ,
generate Θ̂ΘΘ and D, and calculate Ω. Then, calculate the value
of Υ̂ by (15),
3. Among the four candidate values of ẑ = [x̂, ŷ] obtained by
(16), choose the one minimizing (17) as the final estimate for
target location.

IV. COMPARISON OF CRLB BETWEEN TDOA AND TOA

In this section, we derive the CRLB of TOA based estima-
tion algorithms and show that it is much lower (can be 30 dB
lower) than the CRLB of TDOA algorithms.

The CRLB of “active” TOA localization has been studied in
[30]. The “passive” localization has been studied before under
the model of multistatic radar [31], [32], [33]. The difference
between our model and the radar model is that in our model the
localization error is a function of errors of TOA measurements,
while in the radar model the localization error is a function
of signal SNR and waveform.

The CRLB is related to the 2 × 2 Fisher Information
Matrix (FIM) [34], J, whose components J11, J12, J21, J22
are defined in (18) – (20) as follows

J11 = −E(
∂2 ln(p(r̂|z))

∂x2
)

= ΣM
i=1

1

σ2
i

(
x− ai√

(x− ai)2 + (y − bi)2
+

x√
x2 + y2

)2,

(18)

J12 = J21 = −E(
∂2 ln(p(r̂|z))

∂x∂y
)

= ΣM
i=1

1

σ2
i

(
x− ai√

(x− ai)2 + (y − bi)2
+

x√
x2 + y2

)

× (
y − bi√

(x− ai)2 + (y − bi)2
+

y√
x2 + y2

), (19)

J22 = −E(
∂2 ln(p(r̂|z))

∂y2
)

= ΣM
i=1

1

σ2
i

(
y − bi√

(x− ai)2 + (y − bi)2
+

y√
x2 + y2

)2.

(20)

This can be expressed as

J = UTQ−1U, (21)

where Q is defined after Eqn. (8), and the entries of U in the
first and second column are

{U}i,1 =
xr̄i − ai

√
x2 + y2√

(x− ai)2 + (y − bi)2
√
x2 + y2

, (22)

and

{U}i,2 =
yr̄i − bi

√
x2 + y2√

(x− ai)2 + (y − bi)2
√
x2 + y2

, (23)

with r̄i =
√
(x− ai)2 + (y − bi)2 +

√
x2 + y2 .
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The CRLB sets the lower bound for the variance of esti-
mation error of TOA algorithms, which can be expressed as
[34]

E[(x̂−x)2+(ŷ−y)2] ≥ {
J−1

}
1,1

+
{
J−1

}
2,2

= CRLBTOA,
(24)

where x̂ and ŷ are the estimated values of x and y, respec-
tively, and

{
J−1

}
i,j

is the (i, j)th element of the inverse
matrix of J in (21).

For the TDOA estimation, its CRLB has been derived in
[16]. The difference of signal travel time between several
receivers are considered:√

(x− ai)2 + (y − bi)2 −
√
(x− a1)2 + (y − b1)2

= ri − r1 = li, 2 ≤ i ≤ M. (25)

Let l = [l2, l3, . . . , lM ]T , and t be the observa-
tions/measurements of l, then, the conditional probability
density function of t is

p(t|z)= 1

(2π)(M−1)/2 |Z| 12 × exp(−1

2
(t− l)TZ−1(t− l)),

where Z is the correlation matrix of t,

Z = E(ttT ).

Then, the FIM is expressed as [16]

J̌ = ǓTZ−1Ǔ (26)

where Ǔ is a M − 1× 2 matrix defined as

Ǔi,1 =
x− ai√

(x − ai)2 + (y − bi)2
− x− a1√

(x− a1)2 + (y − b1)2
,

Ǔi,2 =
y − bi√

(x − ai)2 + (y − bi)2
− y − b1√

(x− a1)2 + (y − b1)2
.

The CRLB sets the lower bound for the variance of esti-
mation error of TDOA algorithms, which can be expressed as
[34]:

E[(x̂−x)2+(ŷ−y)2] ≥ {
J̌−1

}
1,1

+
{
J̌−1

}
2,2

= CRLBTDOA.
(27)

Note that the correlation matrix Q for TOA is different from
the correlation matrix Z for TDOA. Assume the variance of
TOA measurement at ith (1 ≤ i ≤ M ) receiver is σ2

i , it
follows that:

Q(i, j) =

{
σ2
i i = j,

0 i �= j.

and

Z(i, j) =

{
σ2
1 + σ2

i+1 i = j,
σ2
1 i �= j.

As an example, we consider a scenario where
there is a transmitter at [0, 0], and four receivers at
[−6, 2], [6.2, 1.4], [1.5, 4], [2, 2.3]. The range of the target
locations is 1 ≤ x ≤ 10, 1 ≤ y ≤ 10. The ratio of CRLB of
TOA over that of TDOA is plotted in Fig. 3. Fig. 3 (a) shows
the contour plot while Fig. 3 (b) shows the color-coded plot.
It can be observed that the CRLB of TOA is always — in
most cases significantly — lower than that of TDOA.
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Fig. 3. CRLB ratio of passive TOA over passive TDOA estimation: (a)
contour plot; (b) pcolor plot.

V. PERFORMANCE OF TSE

In this section, we first prove that the TSE can achieve the
CRLB of TOA algorithms by showing that the estimation error
variance of TSE is the same as the CRLB of TOA algorithms.
In addition, we show that, for small TOA error regions, the
estimated target location is approximately a Gaussian random
variable whose covariance matrix is the inverse of the Fisher
Information Matrix (FIM), which in turn is related to the
CRLB.

Similar to the reasoning in Lemma 1, we can obtain the
variance of error in the estimation of Υ as follows:

cov(Υ̂) ≈ (GTΩ−1G)−1. (28)

Let x̂ = x+ex, ŷ = y+ey, and insert them into Υ, omitting
the second order errors, we obtain

Υ̂1 − x2 = 2xex +O(e2x) ≈ 2xex

Υ̂2 − y2 = 2yey +O(e2y) ≈ 2yey
(29)

Then, the variance of the final estimate of target location ẑ
is

cov(ẑ) = E(

[
ex
ey

] [
ex ey

]
)

≈ 1

4
C−1E(

[
Υ1 − x2

Υ2 − y2

] [
Υ1 − x2 Υ2 − y2

]
)C−1

=
1

4
C−1cov(Υ̂)C−1, (30)

where

C =

[
x 0
0 y

]
.

Substituting (14), (28), (12) and (8) into (30), we can rewrite
cov(ẑ) as

cov(ẑ) ≈ (WTQ−1W)−1 (31)

where W = B−1S̄D−1GC. Since we are computing an
error variance, B (19), S̄ (5) and D (14) are calculated
using the true (mean) value of x, y and ri. Using (19) and
(1), we can rewrite B = −diag ([d1, d2, . . . , dM ]), where
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di =
√
(x− ai)2 + (y − bi)2. Then B−1S̄D−1 is given by

B−1S̄D−1 =

⎡
⎢⎢⎢⎢⎢⎣

a1

xd1

b1
yd1

−r̄1√
x2+y2d1

a2

xd2

b2
yd2

−r̄2√
x2+y2d2

...
...

...
aM

xdM

bM
ydM

−r̄M√
x2+y2dM

⎤
⎥⎥⎥⎥⎥⎦ . (32)

Consequently, we obtain the entries of W as

{W}i,1 =
xr̄i − ai

√
x2 + y2√

(x− ai)2 + (y − bi)2
√
x2 + y2

, (33)

{W}i,2 =
yr̄i − bi

√
x2 + y2√

(x− ai)2 + (y − bi)2
√
x2 + y2

. (34)

where {W}i,j denotes the entry at the ith row and jth column.
From this we can see that W = U. Comparing (21) and

(31), it follows

cov(ẑ) ≈ J−1. (35)

Then,

E[(x̂− x)2 + (ŷ − y)2] ≈ {
J−1

}
1,1

+
{
J−1

}
2,2

.

Therefore, the variance of the estimation error is the same as
the CRLB.

In the following, we first employ an example to show
that [x̂, ŷ] obtained by TSE are Gaussian distributed with
covariance matrix J−1, and then give the explanation for this
phenomenon. Let the transmitter be at [0, 0], target at [0.699,
4.874] and four receivers at [-1, 1], [2, 1], [-3 1.1] and [4
0]. The signal travel distance variance at four receivers are
[0.1000, 0.1300, 0.1200, 0.0950]×10−4. The two dimensional
probability density function (PDF) of [x̂, ŷ] is shown in Fig. 4
(a). To verify the Gaussianity of [x̂, ŷ], the difference between
the PDF of [x̂, ŷ] and the PDF of Gaussian distribution with
mean [x̄, ȳ] and covariance J−1 is plotted in Fig. 4 (b).

The Gaussianity of [x̂, ŷ] can be explained as follows. Eqn.
(35) means that the covariance of the final estimation of target
location is the FIM related to CRLB. We could further study
the distribution of [ex, ey]. The basic idea is that by omitting
the second or high order and nonlinear errors, [ex, ey] can be
written as linear function of e:

1) According to (29), [ex, ey] are approximately linear
transformations of Υ̂.

2) (15) means that Υ̂ is approximately a linear transfor-
mation of Θ̂. Here we could omit the nonlinear errors
occurred in the estimate/calculation of Ω.

3) According to (11), Θ̂ ≈ θ̄2 + 2θ̄n + n2, thus, omitting
the second order error, thus, Θ̂ is approximately a linear
transformation of n.

4) (10) and (39) mean that n is approximately a linear
transformation of e. Here we could omit the nonlinear
errors accrued in the estimate of S and Ψ.

Thus, we could approximately write [ex, ey] as a linear trans-
formation of e, thus, [ex, ey] can be approximated as Gaussian
variables.
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Fig. 4. (a): PDF of [x̂, ŷ] by TSE (b): difference between the PDF of [x̂, ŷ]
by TSE and PDF of Gaussian distribution with mean [x̄, ȳ] and covariance
J−1.
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Fig. 5. Simulation results of TSE for the first configuration.

VI. SIMULATION RESULTS

In this section, we first compare the performance of TSE
with that TDOA algorithm proposed in [16] and CRLBs. Then,
we show the performance of TSE at high TOA measurement
error scenario. For comparison, the performance of a Quasi-
Newton iterative method [35] is shown.

To verify our theoretical analysis, six different system con-
figurations are simulated. The transmitter is at [0, 0] for all six
configurations, and the receiver locations and error variances
are listed in Table I. Figures 5, 6 and 7 show simulation results
comparing the distance to the target (Configuration 1 vs.
Configuration 2), the receiver separation (Configuration 3 vs.
Configuration 4) and the number of receivers (Configuration 5
vs. Configuration 6), respectively 4. In each figure, 10000 trails
are simulated and the estimation variance of TSE estimate
is compared with the CRLB of TDOA and TOA based
localization schemes. For comparison, the simulation results
of error variance of the TDOA method proposed in [16] are
also drawn in each figure.

It can be observed that

1) The localization error of TSE can closely approach the
CRLB of TOA based positioning algorithms.

4During the simulations, only one iteration is used for the calculation of
B (19).
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TABLE I
MEASUREMENT SYSTEM PARAMETERS

Configuration # [x, y] Receivers Locations [ai, bi] and TOA Error Variances
1 [3, 8] [-1, 1] (0.1σ2), [2, 1] (0.13σ2), [-3, 1.1] (0.12σ2), [4, 0] (0.095σ2)
2 [31, 28] [-1, 1] (0.1σ2), [2, 1] (0.13σ2), [-3, 1.1] (0.12σ2), [4, 0] (0.095σ2)
3 [10, 13] [-1, 1] (1.0σ2), [1, 1] (1.0σ2), [1, -1] (1σ2), [-1, -1] (1σ2)
4 [10, 13] [-3, 3] (1.0σ2), [3, 3] (1.0σ2), [3, -3] (1σ2), [-3, -3] (1σ2)
5 [12, 8.5] [-2.1, 3] (0.5σ2), [1, 3.1] (1.2σ2), [2.4, 5.1] (1.0σ2), [-2.8, -1.6] (0.9σ2)
6 [12, 8.5] [-2.1, 3] (0.5σ2), [1, 3.1] (1.2σ2), [2.4, 5.1] (1.0σ2), [-2.8, -1.6] (0.9σ2), [-4, -2] (0.7σ2), [2, 5] (0.8σ2)
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Fig. 6. Simulation results of TSE for the second configuration.
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Fig. 7. Simulation results of combined TSE and TDOA algorithm for the
third configuration.

2) The CRLB of TDOA based positioning algorithms is
much higher (about 30dB for Configuration 3, 5 and 6)
than that of TOA based.

Moreover, other interesting observations include

1) Distance to Target: Figure 5 shows that the target
location estimate has larger error variance when the
target is farther from the receivers.

2) Receiver separation: Fig. 6 shows that larger size of the
receiver cluster leads to smaller location estimate error
variance.

3) Number of Receivers: Fig. 7 shows that having more

receivers achieves lower location estimate error vari-
ance.

Table II shows the performance of TSE with larger TOA
measurement error covariance for Configuration 1 and 6. For
comparison, we also show the performance of the Quasi-
Newton method which numerically finds the maximum like-
lihood estimate of target location [x, y] for p(r̂|z) in (3). The
Quasi-Newton method is performed by fminunc in MATLAB,
using multiple rounds of iterations. The initial guess for the
Quasi-Newton method [x̃, ỹ] satisfies that x̃− x̄ and ỹ− ȳ are
both Gaussain random variables with zero mean and variance
1 meter. The average numbers of iterations of Quasi-Newton
are shown in the bracket after the values for the mean square
estimation errors. Note that on the other hand, there is only one
iteration for TSE in all simulations. Noteworthy observations
are:

1) For small value of errors σ < 0.5, both TSE and Quasi-
Newton approach the CRLB closely.

2) For large value of errors σ > 0.5, the TSE deviates
from the CRLB since the second order errors are not
negligible in this situation.

From the simulation results and previous analysis, we can
observe the advantages of TSE over iterative methods are:

1) The computational complexity of TSE is much smaller
than that of iterative methods , while both achieve the
CRLB for small TOA measurement error. Thus, TSE is
an ideal candidate for ultra-wideband TOA localization
systems, which have better than centimeter accuracy
[13].

2) The estimation result of TSE is predictable: the esti-
mated target location is a Gaussian random variable
with known covariance matrix. This feature is very help
helpful when the estimated target location is further
utilized [36].

VII. EXPERIMENTAL RESULTS

In this section, we apply the TSE algorithm to actual
measurement results. In order to obtain reproducible results
that show reduced impact of background and indirect paths,
we place the target, an aluminum pole, in an anechoic cham-
ber. The chamber, part of the UltraLab at the University of
Southern California, exhibits very low wall reflectivity in the
whole considered frequency range. Different materials have
different properties for radio signal reflection. The aluminum
pole in this experiment is used to obtain a good reflection of
radio signals. There are several previous studies for positioning
of objects with different materials, e.g., [28] and [13] studied
the positioning of human body (chest movement), and [37]
focused on the positioning of cancer inside human body.
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TABLE II
COMPARISON BETWEEN TSE AND QUASI-NEWTON MINIMIZATION OF (3)

Configuration # (Method) σ = 0.01 σ = 0.036 σ = 0.1 σ = 0.3162 σ = 0.5623
1 (CRLB of TOA) 2.704 · 10−5 2.704 · 10−4 2.704 · 10−3 2.704 · 10−2 8.551 · 10−2

1 (Quasi-Newton) 2.707 · 10−5 (8.4) 2.708 · 10−4 (8.4) 2.765 · 10−3(8.4) 2.669 · 10−2 (8.4) 8.619 · 10−2 (8.4)
1 (TSE) 2.707 · 10−5 2.709 · 10−4 2.775 · 10−3 2.776 · 10−2 3.045 · 10−1

6 (CRLB of TOA) 1.137 · 10−3 1.137 · 10−2 1.137 · 10−1 1.137 3.594
6 (Quasi-Newton) 1.137 · 10−3 (9.7) 1.139 · 10−2(9.7) 1.158 · 10−1(9.7) 1.1310(10.2) 5.801(11.3)

6 (TSE) 1.137 · 10−3 1.137 · 10−2 1.180 · 10−1 1.642 7.871

Figure 8 (a) shows the measurement setup. Transfer func-
tions are measured by means of an 8720ET Agilent Vector
Network Analyzer (VNA), which steps through 801 frequency
points from 2 to 8 GHz. The transmit antenna is a UWB
horn antenna with strong directionality and the receive an-
tenna is a planar monopole UWB antenna with approxi-
mately omnidirectional radiation pattern designed using the
Jumping Genes Multiobjective Optimization Scheme [38]. The
directional antenna can achieve more accurate localization
performance than the omnidirectional antenna, when the target
direction is roughly known. For example, the directional
antenna can point to the windows in the intruder detection
system. In this experiment, we use the directional antenna for
experimental convenience to enhance signal to interference
noise ratio (SINR) and consequently achieve accurate TOA
measurements. In the chamber, there is one transmitter, three
sequentially measured receive antennas and an aluminum pole
as the target. Figure 8 (b) shows the transmitter and the third
receiver in the chamber.

The transmit signals can propagate from the transmitter to
the receiver either directly via the target (direct path), through
paths that involve both the target and other object (indirect
paths), or through paths that do not involve the target at all
(background paths). In the first step, the background paths
are eliminated through background subtraction [28]. We then
subsequently use Maximum Likelihood parameter estimation,
in particular the RIMAX algorithm [39], [13] to extract the
TOAs from the transmitter to three receivers, respectively; we
furthermore obtain the strengths, and thus the SNRs, of the
direct paths at the receivers. The flow chart of target location
estimation using TSE is shown in Figure 9. The measurement
setup parameters are as follows:

• Transmitter Location: [0, 0] meter,
• Target Location: [0.699, 4.874] meter,
• Receiver 1 Location: [-1.260, -0.501] meter,
• Receiver 2 Location: [-1.294, 0.082] meter,
• Receiver 3 Location: [1.188, -0.460] meter,
• Tx and Rx frequency band: 2-8 Ghz,
• Transmitted signal power: -10 dbm.
From the TOA estimates, the target is localized using the

TSE algorithm.
There are 100 triples of measured signal travel ranges r̂1, r̂2

and r̂3 at the three receivers, respectively, where r̂i denotes the
range measurement at the ith receiver. The mean values of r̂1,
r̂2 and r̂3 are 10.645, 10.114 and 10.280 meters, respectively.
The standard deviations of r̂1, r̂2 and r̂3 are 0.0015, 0.0012
and 0.0016 meters, respectively. The histogram plots of r̂1, r̂2
and r̂3 are shown in Fig. 10.

Based on the variance of r̂1, r̂2 and r̂3 and locations of
the receivers, the CRLBs of TOA and TDOA algorithms

(a) Measurement Setup schematic  (b) Pictures of transmitter and the third receiver 

Fig. 8. Measurement setup schematic.

are 1.65 × 10−5 m2 and 0.0379 m2 under the assumption
of Gaussian distributions of r̂1, r̂2 and r̂3 . The estimation
error variance of the target location obtained with TSE is
1.73 × 10−5 m2, while that of the TDOA based algorithm
in [16] is 0.0340 m2, respectively. Both the error variances
of TSE and the TDOA algorithms are close to their CRLBs.
However, the CRLB of TDOA is 2.3 × 103 times that of
TOA. In other words, the estimation error variance of TSE
is expected to be about 33 dB lower than the achievable error
variance using TDOA based algorithms.

VIII. CONCLUSIONS

This paper proposes a novel algorithm, called TSE, for
positioning of targets. In contrast to previous papers, it con-
siders the case where the target is not the transmitter while at
the same time transmitter and receivers are synchronized and
can exploit the information of time-of-arrival (TOA), instead
of the less-accurate time-difference of arrival (TDOA). The
TSE proceeds in two steps, first computing estimates for a
parameter set x, y, and

√
x2 + y2, secondly updating the

location vector [x, y] from the results of first step.
By both theoretical analysis and numerical simulations, we

show that for small TOA estimation errors the TSE approaches
the CRLB very closely with only one iteration. Further results
show the CRLB of passive TOA estimation to be much lower
than that of TDOA. This indicates that the synchronization
between the transmitter and the receivers can substantially
decrease the localization error.

Experiments also showed that the error variance of TSE
is very close to the CRLB of TOA algorithms under the
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VNA captures channel 
response 

RIMAX extracts signal travel 
ranges of different paths 

The signal travel range with the 
highest power is picked out and 
considered as the distance from 
transmitter to target to receiver 

TSE uses the obtained signal 
travel ranges  at three receivers 

to estimate target location 

Fig. 9. Flow chart of target location estimation using TSE.
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Fig. 10. Distribution of 100 measured signal travel ranges r̂1, r̂2 and r̂3 at
three receivers.

assumption of Gaussian range measurement errors. In addi-
tion, the error variance of TSE is significantly (33 dB in our
measurements) lower than that of TDOA algorithms.

Our results thus demonstrate the potential advantages of
using synchronization between TX and RX in passive object
localization, and furthermore provide a practical tool to exploit
this potential to its full extent.
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APPENDIX

PROOF OF LEMMA 1

Let θ̂θθ = θ̄θθ + n, Ŝ = S̄+ eS and ĥ = h̄+ eh, where
θ̄θθ, S̄ and h̄ are true/mean values and θ̂θθ, Ŝ and ĥ are the

measured/estimated values. Obviously,

h̄− S̄θ̄θθ = 0. (36)

According to (5) and (7),

ϕϕϕ = h̄+ eh − (S̄+ eS)θ̄θθ

= eh − eSθ̄θθ. (37)

Multiplying both sides of (10) by
(S̄T + eS

T )Ψ−1(S̄+ eS), it follows

(S̄T + eS
T )Ψ−1(S̄+ eS)(θ̄θθ + n)

= (S̄T + eS
T )Ψ−1(h̄+ eh),

Leaving only the linear perturbation terms by omitting the
second order errors, using (36), it follows that

S̄TΨ−1S̄n ≈ S̄Ψ−1(eh − eSθ̄θθ).

Then, we obtain

n = (S̄TΨ−1S̄)−1S̄Ψ−1(eh − eSθ̄θθ)

= (S̄TΨ−1S̄)−1S̄Ψ−1ϕϕϕ. (38)

According to (5) and (7), substitute ϕϕϕ by Be, it follows that

n ≈ (S̄TΨ−1S̄)−1S̄Ψ−1Be. (39)

Then,

cov(θ̂θθ) ≈ E(nnT )

= (S̄TΨ−1S̄)−1S̄TΨ−1BE (eeT )

×BTΨ−1S̄[(S̄TΨ−1S̄)−1]T .

Because BE (eeT )BT = Ψ, and [(S̄TΨ−1S̄)−1]T =
(S̄T Ψ̄−1S̄)−1, it follows that

cov(θ̂θθ) ≈ (S̄TΨ−1S̄)−1S̄TΨ−1S̄(S̄TΨ−1S̄)−1

= (S̄TΨ−1S̄)−1,

which ends the proof of Lemma 1.
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