
USC Viterbi School of Engineering

Ming Hsieh Department of Electrical Engineering

Pricing Mechanisms in the Wholesale Electricity Market

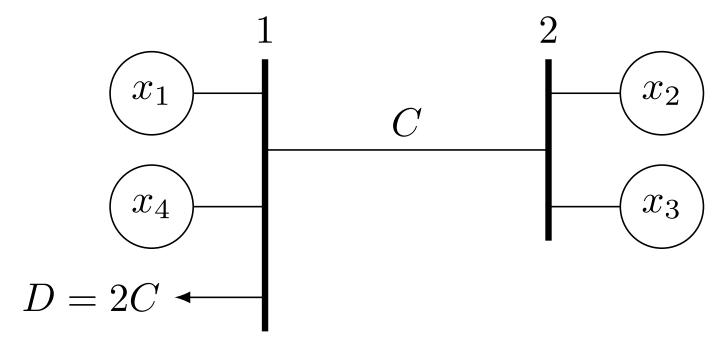
Wenyuan Tang Rahul Jain

Motivation

- ► Locational marginal pricing is widely employed
- ► The underlying assumption is a competitive environment
- ► But the truth is that LMP is subject to market manipulation
- ► We use game theory to investigate the pros and cons of LMP
- ► We also propose the power network second price mechanism

Model

- lacksquare I nodes and N generators, with N_i the generator set at node i
- $ightharpoonup Y_{ij}$ and C_{ij} : admittance and capacity limit of line i-j
- \blacktriangleright θ_i and D_i : phase angle and inelastic demand at node i
- $ightharpoonup c_n(x_n)$: cost of generator n as a function of its generation x_n
- Economic dispatch problem


$$\begin{aligned} & \min_{x_n,\theta_i} & & \sum_n c_n(x_n) \\ & \text{s.t.} & & \sum_{n \in N_i} x_n - D_i = \sum_j Y_{ij}(\theta_i - \theta_j), \ \forall i & & [\pi_i] \\ & & & Y_{ij}(\theta_i - \theta_j) \leq C_{ij}, \ \forall (i,j) & & [\mu_{ij}] \\ & & & x_n \geq 0, \ \forall n \end{aligned}$$

- \blacktriangleright π_i : LMP at node i
- ▶ Payoff of generator $n \in N_i$: $u_n = \pi_i x_n c_n(x_n)$
- Economic dispatch game
 - ▶ Generators may not reveal their cost functions truthfully
 - ▷ bid: reported cost function
 - $\triangleright b_n^0(x_n)$: multi-segment bid in practice
 - $\triangleright b_n(x_n)$: two-segment bid in our model
 - \triangleright Replace the objective function by $\sum_n b_n(x_n)$

Main Results

- ► LMP does not always work

 - Even when a Nash equilibrium exists, the price of anarchy may be arbitrarily large

Suppose $c_1(x)=x$, $c_2(x)=c_3(x)=kx$, $c_4(x)=2kx$. The economic dispatch is $x^*=(2C,0,0,0)$ with social cost $c_1(2C)=2C$. One Nash equilibrium is $b_1(x)=b_4(x)=2kx$, $b_2(x)=b_3(x)=kx$. The resulting dispatch is x=(C,C,0,0) with social cost $c_1(C)+c_2(C)=C+kC$. The PoA is bounded below by $(C+kC)/2C=(k+1)/2\to\infty$

- ► LMP works well in most cases
 - Under either of the following two conditions, not only a Nash equilibrium but also an efficient one exists
- \triangleright Congestion-free condition: no line flow constraint is binding in the economic dispatch problem $(\mu_{ij} \equiv 0)$
- \triangleright Monopoly-free condition: there are at least two generators at each node ($|N_i| \ge 2$ for all i)
- ► Our findings coincide with the policy proposed in *The California Electricity Crisis*: ensure competition in wholesale markets

PNSP Mechanism

- ► The same bid format and dispatch rule as LMP
- ► The payment rule is different
 - $\triangleright (x_1^{-n_0}, \dots, x_N^{-n_0})$: dispatch when generator n_0 is excluded
 - \triangleright Payment made to generator n_0 (positive externality):

$$w_{n_0} = \sum_{n \neq n_0} b_n(x_n^{-n_0}) - \sum_{n \neq n_0} b_n(x_n),$$

- Payoff of generator n_0 : $u_{n_0} = w_{n_0} c_{n_0}(x_{n_0})$
- ► The PNSP mechanism always induces an efficient Nash equilibrium
 - \triangleright Consider the bid profile: $p_n=c_n'(x_n^*)$, $s_n=x_n^*$, $q_n>p_n$
 - \triangleright It induces the economic dispatch x^*
 - ▷ It can be shown to be a Nash equilibrium (using convexity)
- Comparison with LMP
- ▷ PNSP specifies the total payment to each generator, while generators at the same node get the same unit price in LMP
- ▶ Both may have undesirable Nash equilibria so that new designs of pricing mechanisms are needed