Ming Hsieh Department of Electrical Engineering

SPARSITY-BASED RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE **TOMOGRAPHY IMAGES**

Jason Tokayer¹, Antonio Ortega¹ and David Huang²

¹Signal and Image Processing Institiute, University of Southern California ²Casey Eye Institute, Oregon Health and Science University

Abstract

- Develop novel algorithm for segmentation of optical coherence tomography (OCT) retinal images
- Define graph over sparse representation of image to extract boundaries between retinal layers
- Method can segment between 8 and 11 interlayer boundaries without making overly restrictive anatomic assumptions

Segmentation Algorithm

- Limit search region
 - Identify retina and choroid using intensity mask
 - Flatten image to top of retina

Figure 3: Initial search region limitation. Left Panel - Original image; Middle Panel - Retina/choroid mask; Right Panel - Image

• Node b_{ij} denotes segment i begins layer j; node e_{ij} denotes segment *i* ends layer *j*

- Node is reachable only if segments are close to layers $(|P_{l_i} - P_{s_i}| \le 3)$
- Layer extension transition $(b_{ij} \rightarrow e_{i'j})$ segments $s_{i:i'}$ extend layer l_i
- $Cost = \alpha |I(l_j) I(s_{i:i'})| + \beta |L(l_j) I(s_{i:i'})| \quad (1)$ if $i \geq i'$ and is otherwise infinite - All layer extension transition $(e_{ij} \rightarrow b_{i'j+1})$ - no

Background

Retina

- Layered structure that contains photoreceptors
- OCT measures light backscattered from layers
- Primarily horizontal layers in OCT images
- Morphology used in diagnosis of pathologies

flattened to top of retina

Smooth and downsample

- Median filter across N (eg 20) columns
- Downsample by N
- **Obtain sparse approximation**
- Columnwise sparse approximation via sparse Bayesian learning (SBL) algorithm
- Basis of Heaviside step functions segments
- Each segment s_i has mean intensity I_{s_i} , position P_{s_i} , front edge height E_{s_i} and length L_{s_i}
- $s_{j:j'}$ denotes combination of adjacent segments

 Layer building may result in faulty Figure 4: Sparse approximation of single column. Top Left Panel boundaries/layers

layer skipping

$$Cost = \gamma |E(l_{j+1}) - E(s_i)|$$
 (2)

if i > i' and is otherwise infinite

• Merge transition $(b_{ij} \rightarrow e_{i'j'})$ - merge layers $l_{j:j'}$ $Cost = \alpha |I(l_{j:j'}) - I(s_{i:i'})| + \beta |L(l_{j:j'}) - I(s_{i:i'})|$

if $i \geq i'$ and j' = j + 1 and is otherwise infinite

Figure 6: Sample graph traversal. Layer 1 extended by segments 1 and 2; layers 2 and 3 merge.

- Djikstra's algorithm to solve single source shortest path problem from b_{11} to e_{SL} • Prune Interlayer Boundaries -

Layer Segmentation Algorithms Columnwise intensity profiling

- Sensitive to inhomogeneities
- Fixed number of layers (4-9)
- **Graph-cut segmentation**
- Complexity scaling
- Fixed number of layers (4-9)
- Restrictive assumptions

Novel Segmentation Algorithm

- Exploits columnwise layer sparseness
- No assumptions about (a) the number of layers or (b) interlayer relationships
- Identifies layers in parallel

Algorithm Flowchart

- Single column from image; Top Right Panel - Sparse approximation of single column; Bottom Left Panel - Image; Bottom Right Panel - Sparse approximation of image

Identify new boundaries Build Layers

- Use graph theory to group segments into layers that extend across columns
- I_{l_i} , P_{l_i} , E_{l_i} , L_{l_i} defined by local averages

Segments represented by gray rectangles

Figure 5: Layer building formulation - Seek assignment of layers in columns 1:C-1 with segments in column C

- Test boundary using gradient and consistency
- Initialization
- Initialize layers in first column
- Set each segment to distinct layer merge as move across columns

Iterate

- Restrict search space between adjacent reliable interlayer boundaries
- Repeat algorithm until no new layers are found

Figure 7: Left Panel - interlayer boundary pruning; Right Panel - search space reduction using reliable boundaries

Conclusions and Future Work

Figure 2: Schematic of layer segmentation algorithm

References

- [1] H. Ishikawa, D. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, J. S. Schuman, Invest. Ophthalmology and Visual Sc. **46**(6) (2005), 2012-2017.
- [2] S. Chiu, X. Li, P. Nicholas, C. Toth, J. Izatt, S. Farsiu, Optics Express **18**(18) (2010), 19413-19428.
- [3] R. Pique-Regi, J. Monso-Varona, A. Ortega, R. C. Seeger, T. J. Triche, S. Asgharzadeh, Bioinformatics **24**(3) (2008), 308-318.

Results

 Scanned 2 eyes a total of 12 times each • Found 8-11 boundaries on all scans (other algorithms find 9 at most)

NFL: nerve fiber layer, GCL: ganglion cell layer, IPL/OPL: inner/outer plexiform layer, INL/ONL: inner/outer nuclear layer, ELM: external limiting membraneIS/OS: inner/outer segment, RPE: retinal pigment epithelium, CH: choroid

Figure 8: Segmentation results for 2 eyes

- Algorithm segments between eight and eleven layer boundaries without making overly restrictive anatomic assumptions
- Sparse representation can be used as preprocessing step in other graph-based segmentation algorithms
- Plan to optimize system parameters via statistical means as well as extend algorithm to handle pathological retinas

Ming Hsieh Institute Ming Hsieh Department of Electrical Engineering