
Sl
ee

p

W
ak

eu
p

A
w

ak
e

Sy
nc

Low	 High	

ß
 P

ow
er

 C
on

su
m

pt
io

n
à

ß Time à

Enhancing Server Energy Efficiency by
Shifting Light Burden to an Assistant

Daniel Wong Murali Annavaram

Email:	 wongdani@usc.edu,	 annavara@usc.edu	 	

The KnightShift System
•  Primary server and Knight

has independent:
•  Power supply
•  Memory
•  System Disk

•  Primary server and Knight
shares data through NFS
or Southbridge modifications

•  Scheduler directs request
•  Knightshiftd daemon coordinates system

•  Datacenter servers mostly
operate at low utilization levels

•  Even when idle, server consumes
majority of peak power

•  Server shutdown is not ideal
•  Energy proportionality scaling

trend has stalled
•  Solution -- KnightShift: Front server

with low power assist node (Knight)

Introduction

!"

!#"""

!$"""

!%"""

!&"""

!'""""

!'#"""

!'$"""

!" !#" !$" !%" !&" !'""

()
*
+!
),
!*
),
-.
+/

0!123!-.)4)56.)7,

64-896
:)9.6;

*/:<**='
/:<>'"
*/:</.79+'
*/:</.79+?

,-,@)
+*6)4

*/:<**="
*/:<**=#
/:<>A

*/:</.79+#
*/:</.79+$

/BC0%	

20%	

40%	

60%	

80%	

100%	

Oct-‐03	 Feb-‐05	 Jul-‐06	 Nov-‐07	

En
er
gy
	 P
ro
po

rE
on

al
ity

	

Specpower	 published	 dates	

Scaling of Energy Proportionality of
production servers has stalled

CDF of CPU utilization in USC datacenters
shows 20% utilization or less is common

Knight	

Memory	

OS	
Disk	

Data	
Disk	

Primary Server	

Memory	

OS	
Disk	

Data	
Disk	

NFS Mount

Scheduler	

Request

KnightShift Architecture

Evaluation
•  Primary Server

•  Xeon-based
•  156-205W

•  Knight
•  Atom-based
•  15W-16.7W
•  15% Capable

•  Wikibench workload
•  USC datacenter traces

Power
Meter

Client
Node

Knight
Primary
Server

Power
Logger

Workload
Generator

KnightShiftd

Scheduler Web
App.

KnightShiftd

Web
Application

Power
Meter

Wall Plug Power
Supply

Power Usage

Client Request

Request

KnightShift
Message

Evaluation Setup

Results

•  For compatible workloads,
significant power savings with
minimal impact on performance

•  Incompatible workloads due to
bursty workloads and lack of
low-utilization periods

	 	 Energy	 Consump.on	 KWH	 (Savings	 %)	 Latency	 	
Impact	 (%)	 Trace	 Baseline	 KnightShiA-‐enabled	

Aludra	 34.2	 3.6	 (89.4%)	 6.36%	
Email	 40.0	 3.4	 (90.0%)	 0.98%	
Girtab	 33.8	 3.7	 (88.9%)	 26.36%	
Msg-‐mmp1	 37.8	 38.2	 (-‐1.1%)	 44.41%	
Msg-‐mx10	 36.3	 28.2	 (22.4%)	 218.67%	
Msg-‐store1	 35.3	 10.4	 (70.7%)	 62.21%	
Nunki	 34.2	 6.1	 (82.1%)	 327.11%	
Scf	 34.5	 5.7	 (83.5%)	 42.93%	
Wikibench	 11.6	 7.68	 (33.8%)	 4.17%	

KnightShiftd Coordination

Primary	
Server	

Knight	

Primary:
Flush memory
state, send
sleep msg.,
enter low power
state

Knight: Begin
processing
requests Knight: Flush

memory and send
sync msg

Primary: Wakeup,
send awake msg,
wait for data sync,
process requests

Baseline Aggressive Conservative Hybrid
Workload (ms) 144 150 (4.2%) 149 (3.5%) 150 (4.2%)
Trace (relative) 1 1.045 (4.5%) 1.019 (1.9%) 1.087 (8.7%)
Error 0.3% 1.6% 4.5%

Table 2: Response Time of Workload vs Trace based emulation

Trace Baseline Aggressive Conservative Hybrid
aludra 34.2 4.1 (87.9%) 3.7 (89.2%) 3.6 (89.4%)
email 40.0 4.9 (85.5%) 3.4 (89.9%) 3.4 (90.0%)
girtab 33.8 4.3 (87.2%) 3.8 (88.7%) 3.7 (88.9%)
msg-mmp1 37.8 40.2 (-6.6%) 39.0 (-3.3%) 38.2 (-1.1%)
msg-mx10 36.3 33.8 (7.2%) 29.8 (18.0%) 28.2 (22.4%)
msg-store1 35.3 23.1 (34.5%) 11.2 (68.2%) 10.4 (70.7%)
nunki 34.2 11.0 (67.8%) 6.5 (81.1%) 6.1 (82.1%)
scf 34.5 7.8 (77.5%) 5.9 (82.8%) 5.7 (83.5%)
wikibench 23.3 15.3 (34.5%) 15.3 (34.0%) 14.5 (37.5%)
Average Savings 52.8% 61.0% 62.6%

Table 3: Energy consumption of various scheduling policies in KWH and savings wrt Baseline of a 15% Capable
KnightShift system

(a) msg-mmp1 (b) girtab (c) msg-store1

Figure 5: Power usage of KnightShift run

representative of all traces with similar workloads.

Validating Trace Based Emulation: First off, we would like to validate and give confidence that the results of

the trace based emulation are similar to the results of the application run. We collected utilization traces from our

WikiBench run and re-played the utilization traces through the trace emulator. Table 2 shows the latency results

from running WikiBench on the full KnightShift implementation and the corresponding trace driven emulation

run. The latency results are fairly close, within 5%. The differences are primarily due to the approximation of

latency computation as described in Section 6.1 For brevity, we also validated the power consumption during the

run and verified that the results between the workload and trace driven emulation is within 3%.

Scheduling Policy Impact on Energy Consumption: We evaluated our three scheduling policies and compare

16

Wikibench request trace Utilization and power
usage during test

Msg-mmp1 trace

