Energy-Efficient, Heterogeneous Sensor Selection for Physical Activity Detection in Wireless Body Area Networks

Daphne-Stavroula Zois*, Marco Levorato*,# and Urbashi Mitra*

{zoius,ubli}@usc.edu, levorato@stanford.edu

Introduction

- Wireless Body Area Networks (WBANs) = sensor networks with:
 - on-body heterogeneous sensors
 - fusion center (a personal device)
- Biometric sensors: ECG, accelerometers, oxygen, insulin, GSR, etc.
- Applications: health, military, sports, emergency response
- Challenges:
 - (New sensors)
 - Reliability, real-time operation
 - Security, Privacy, User-friendliness

System Overview & Characteristics

- Goal & Approach: energy-efficient activity detection
 - Cheap sensors on phone vs. network sensors (power-saving strategy)
 - Multimodal sensing (different sensor discrimination capabilities)
 - Minimize phone power consumption

Prior Work

- Typical sensor networks: power minimized at nodes

MDP Framework – select transmission modes / sampling rates / sensor subsets
- Krishnamurthy07, Atlasi11, Fuenzalida11

POMDP Framework – select sensor subsets
- Balasubramanian04, Cadis05, Dutta05

CMDP Framework – select sensor sampling policy
- DapsisR10, Wang11

- We cannot use these methods since:
 - Heterogeneous sensors in energy use and detection capabilities
 - Time-evolving physical activity known through noisy observations
 - Constrained energy budget of fusion center (vs. sensors)

Optimization Problem

Cost function
\[J = \frac{1}{n} \sum_{i=1}^{n} g(x_i, u_i) \]

Total cost:
\[g(x_i, u_i) = (1 - \lambda) f(x_i, u_i) + \lambda x_i(u_i) \]

- worst-case error probability
- normalized energy cost

Partially observable, stochastic control problem
\[\min_{u_0, u_1, \ldots, u_{T-1}} J^\lambda \]

Methodology

- Dynamic Programming (DP):
 \[J^\lambda(p_k, n_k) = \min_{u_k} \left\{ \frac{1}{T} \sum_{i=1}^{T} g(x_i, u_i) + \lambda x_i(u_i) \right\} \]
 \[= \min_{u_k} \left\{ \frac{1}{T} \sum_{i=1}^{T} g(x_i, u_i) + \lambda x_i(u_i) \right\} \]

 - Determine solution at corners of belief space via approximate DP
 - Solution at arbitrary belief state determined by time-sharing as
 \[J^\lambda = \min_{u_k} \left\{ \frac{1}{T} \sum_{i=1}^{T} g(x_i, u_i) + \lambda x_i(u_i) \right\} \]
 suboptimal but with lower complexity

- Energy-Efficient Maximal Belief Approximate DP (EE-MBADP):
 \[\min_{u_k} \left\{ \frac{1}{T} \sum_{i=1}^{T} g(x_i, u_i) + \lambda x_i(u_i) \right\} \]
 \[= \min_{u_k} \left\{ \frac{1}{T} \sum_{i=1}^{T} g(x_i, u_i) + \lambda x_i(u_i) \right\} \]

Simulations

- Significant energy gains
- Satisfactory detection accuracy
- Few resources utilized

References

*Department of Electrical Engineering, Stanford University, Stanford, CA 94305

This research has been funded in part by the following grants and organizations: ONR N00014-09-1-0700, NSF CNS-0832186, NSF EEC-0917343, the National Center on Minority Health and Health Disparities (NCMHD) (supplement to P60 MD002254), Nokia and Qualcomm.