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How to efficiently track a time-varying, unknown process by
adaptively exploiting heterogeneous resources?




How do we learn?

“Is the person
wearing
glasses?”

“Does the
person have
blue eyes?”

“Does the

person have a
beard?”

* The learning process is sequential and adaptive/active
= The answers may not be entirely reliable (noisy observations)

= The phenomenon may change with time 3
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What is my problem?
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Y = f(Xa u) — X this is active hypothesis testing
observation  state, control for a time-varying process




Case Study: Activity Detection in WBANS
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Listening via Bluetooth is expensive!!!

4 N
If data are collected from all sensors (ECG, OXI, ACC, GPS) and written to a local

flash drive on the N95 without buffering, the battery Iife is 4h. This is in
ksharp contrast to the N95’s 10h of rated talk time and 200 standby hours.
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Sensors are Heterogeneous!
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usage cost usage cost

* Different sensors are good at discriminating different states
* Sensors do not have the same usage cost

Q: Which sensor to listen to and for how long?
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Proposed Framework

* Proposed a Partially Observable Markov Decision Process
(POMDP) model
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Sensor Selection Strategies
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« Derived optimal sensor selection strategy via dynamic
programming (DP)
 Derived three approximation schemes

= Time Sharing Sensor Selection (T3S) algorithm | [ ower complexity than
= Maximal Belief Sensor Selection algorithm - | optimal solution

HUSC " Greedy Minimum Error Probability algorithm 8




Trade-off Curves
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Energy gains as high as 68% with 99% detection accuracy!!!
* Near —optimal performance of approximate schemes

Very few resources used




Current Efforts: Scalability

Physical Activity

Emotional State

Location

* Fine-grained characterization of physical activities: state space
explosion

= new state estimation techniques

= accelerate detection & control tasks =2 exploit underlying
structure
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Thank you!




