

Ming Hsieh Department of Electrical Engineering

Warped Gating: Gating Aware Scheduling and **Power Gating for GPGPUs**

Mohammad Abdel-Majeed, Daniel Wong and Murali Annavaram

GPGPU Execution units

Introduction

Motivation

S

GATE

Blackout

Results

- · GPU targets application with thousands of threads.
- Large number of execution units in the GPGPU.
- Each unit has an INT and FP pipelines.
- 32/SM in Fermi and 192/SM in Kepler.

Execution units burn massive leakage and dynamic power Why not power gate the execution units?

 Scheduler greedily issues ready instructions (without considering instruction type)

• On average 16 warps are ready to execute any cycle

- Good mix of INT and FP instructions are available each cycle
- INT/FP units turn ON/OFF rather rapidly due to greedy scheduling
 - Power gating needs many consecutive cycles of idleness
 - So no opportunity to power gate
- Power Gating regions
 - A: Detect Idle periods(no Gating)
 - **B**:Gating overhead is higher than saving(Power gated)
 - **C**:Cycles spent in this region will Translate into savings

 Give priority to same instruction type during scheduling

Change the scheduling order based on the instruction mix of the benchmark.

• GATES is able to increase the length of idle period but still not long enough to take advantage

- Idle periods are unable to go past break even time
 - Force idleness until break-even period once a unit goes idle and even if an instruction needs that unit
- Performance Loss? Scheduler Supp • No because one can take advantage of other available Scheduler resources and instruction mix **Issue Logic Execution Units** _Buffer Busy Issued Arbiter V Dec_INST INT R Ready, Typ Cycles>idle_detect PG_Signals Instruction Ready, Typ INT_RDY FP_RDY Dec_INST FP 30% Ready, Typ Idle_detect Dec_INST SFU R SFU_RDY LDST_RDY Architectura 54.3% 0.0% 45.7% PG Logic Ready, Typ V Dec_INST LD R Cycles>wakeup_delay Frequency 10% BET_counter Uncompensated Highest priority PG_status Critical wakeup Priority Logic Cycle 1 Scoreboard Adaptive idle dle_detect INT_ACTV FP_ACTV Count_info Wakeup value Idle detect detect Critical Wakeup logic Counter 0% Cycle 1+BET 20 15 25 Ω Ready_instruction_scheduled Idle period length Compensated Cycles>BET time
- 0 Conv_PG Gating Aware 📃 Coordinated Blackout 📃 Adaptive Idle_detect

Simulation Setup

- GPGPU-sim cycle accurate simulator.
- Fermi architecture
- 14 cycles BET, 3 cycles wakeup latency, 5 cycles idle detect
- Benchmarks **GPGPU-sim** simulator

1.5x

Leakage power Reduction

~0%

Area overhead

Performance overhead

1%

Ming Hsieh Institute Ming Hsieh Department of Electrical Engineering