MingHsieh Department of Electrical Engineering

Identifiability Results for III-posed Bilinear Inverse Problems

Sunav Choudhary and Urbashi Mitra
Communication Sciences Institute

Main Message

$>$ Identifiability crucial in inverse problems
> Not well understood for non-linear systems/constraints
$>$ We develop theory for Bilinear Inverse Problems
$>$ subsumes blind estimation
$>$ deterministic characterization of identifiability
$>$ probabilistic scaling law
$>$ general conic constraints included, e.g. sparsity and low rank constraints

- Connect blind estimation to low-rank matrix recovery
$>$ readily available convex relaxations

Introduction

Find $(\boldsymbol{x}, \boldsymbol{y})$
Subject to $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{K}$
$\boldsymbol{S}(\cdot, \boldsymbol{y})$ linear $\forall \boldsymbol{y} \in \mathbb{R}^{n}$
$\boldsymbol{S}(\boldsymbol{x}, \cdot)$ linear $\forall \boldsymbol{x} \in \mathbb{R}^{m}$

\mathcal{K} is a cone

Matrix Factorization

Find $(\boldsymbol{X}, \boldsymbol{Y})$
Subject to

Lifting

Linear Convolution: $\boldsymbol{S}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x} \star \boldsymbol{y}$ $(m=3, n=4, p=m+n-1=6)$

1000	0100	00010
0000	1000	010
0000	0000	100
S_{1}	S_{2}	S_{3}
000001	0000	00000
0010	000	00
0100	0010	000
S_{4}	S_{5}	S_{6}

Universal Identifiability

\mathcal{M}^{\prime} is domain of ambiguity
$\mathcal{M}^{\prime}=\left\{\boldsymbol{Y}-\boldsymbol{Z} \mid \boldsymbol{Y}, \boldsymbol{Z} \in \mathcal{K}^{\prime}\right\}$
$\mathcal{N}(\mathscr{S}, 2)$ is rank-2 null space

Instance Identifiability

\boldsymbol{M} is identifiable
$\boldsymbol{M}_{\mathrm{ni}}$ is not identifiable
\boldsymbol{X} in rank-2 null space
$\mathcal{R}(\cdot)$ is row space
$\mathcal{C}(\cdot)$ is column space

Exponential Scaling Law

$>$ i.i.d. Gaussian/Bernoulli Inputs
$>$ Probability of Identifiability =

$$
1-\exp \left[C_{1} \cdot p-C_{2} \cdot(m+n)\right]
$$

> p is DoF in rank-2 null space
$>m, n$ are problem dimensions
$>p=o(m+n)$ implies
identifiability w.h.p.

Simulation Results

$\underset{\boldsymbol{X}}{\operatorname{minimize}} \operatorname{rank}(\boldsymbol{X})$
subject to $\|\boldsymbol{X}-\boldsymbol{M}\|_{\mathrm{F}} \leq \epsilon$

$$
\mathscr{S}(\boldsymbol{X})=\mathbf{0}
$$

$>$ Used Reweighted Nuclear Norm Heuristic
> Used Convolution Operator

References

$>$ S. Choudhary and U. Mitra, On Identifiability in Bilinear Inverse Problems, ICASSP 2013
> S. Choudhary and U. Mitra, Identifiability Bounds for Bilinear Inverse Problems, Asilomar 2013 (to appear)
> E. Balas, Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization, Ann. Oper. Res. 2005
$>$ E. Candes and Y. Plan, Tight Oracle Inequalities for Low-rank Matrix Recovery from a Minimal Number of Noisy Random Measurements, IEEE Trans. Inform. Theory 2011
> B. Recht, W. Xu and B. Hassibi, Null space Conditions and Thresholds for Rank Minimization, Math. Program., Ser. B 2011

