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A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains.
The noise applies to the state density and helps the Markov chain explore improbable regions of the state
space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm
inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary
shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a
noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past
state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three
well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise
benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype
drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth
simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53%
for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence
if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not
converge quickly and that do not have strong absorbing states.
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I. NOISE BENEFITS IN MARKOV CHAIN
DENSITY ESTIMATION

We show that noise can speed convergence to equilibrium in
discrete finite-state Markov chains. Judiciously adding noise
directly to the state density speeds up the convergence time
for the Markov chain simulation depending on the direction
of an inequality. The noise appears to give the Markov
chain system access to a statistically richer set of otherwise
improbable states. Neural network researchers have observed
related smoothing effects that arise when adding noise to
training data [1,2]. Figures 1, 2, and 3 show a Markov chain
noise benefit when a simulation adds noise to the current
state density. Table II summarizes the 53%–64% performance
improvement after adding noise in a simulation. Figure 10
shows that this noise benefit holds over successive cycles.

Many nonlinear signal systems benefit from adding small
amounts of noise [3–16]. Too little noise produces little or
no benefit while too much noise can swamp the system’s
performance. This so-called “stochastic resonance” effect can
take the form of an increased signal-to-noise ratio [17–19],
entropy-based bit count [20–22], input-output correlation [23],
or probability of detection [24,25]. The noise benefit for a
simulated Markov chain is a shorter time to converge to the
equilibrium probability density in the sense that the noise
reduces the vector norm of the error.

Markov chains form a basis for powerful Markov chain
Monte Carlo (MCMC) statistical simulations [26]. MCMC
methods generate samples from a given posterior probability
density function by constructing a Markov chain whose
stationary density equals the posterior of interest [27,28]. The
Metropolis-Hastings algorithm [29,30] and Gibbs samplers
[31,32] are special and powerful MCMC frameworks that
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compute Bayesian statistics. But MCMC methods suffer from
problem-specific parameters that govern sample acceptance
and convergence assessments [33,34]. A strong dependence on
the initial conditions also biases the MCMC sampling unless
the simulation allows a lengthy period of “burn-in” to allow
the driving Markov chain to mix adequately [26,35].

The Markov chain noise benefit theorem in the next section
shows how to construct a normalized state density at each time
cycle for a finite time-homogeneous Markov chain with an
irreducible and aperiodic state transition matrix. The theorem
and corollary guarantee the existence of a component-wise
noise benefit that decreases the time to convergence. They
show that noise can perturb the current state of a Markov
chain to explore novel regions in the state space and speed
convergence to the steady-state distribution. The form of the
noise depends on the direction of a state-related inequality.
The theorem may ensure only minimal benefits for systems
that exhibit fast convergence or that possess strong absorbing
states.

Section III presents two algorithms that use the Markov
chain noise benefit theorem to obtain a noise benefit. The first
algorithm shows how the simulation can obtain an optimal
noise benefit. The second algorithm describes how to obtain
a noise benefit that uses only the current and past state of
the Markov chain. A key limitation in applying this result
to MCMC is that the system does not usually have direct
access to the current state vector during the MCMC simulation.
Table III shows that systems can still benefit from noise even
without direct access to the state vector. Suitable guesses for
the sign of the inequality should help further overcome this
limitation in practice.

II. MARKOV CHAIN NOISE BENEFIT THEOREM

The Markov chain noise benefit theorem below shows that
Markov chain simulations can benefit from noise through
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FIG. 1. (Color online) Noise benefits in the two-parameter (Krafft-Schaefer) Ehrenfest diffusion model. Noise enhances the two-parameter
Ehrenfest diffusion model by decreasing the time to convergence. The figures summarize the results from a 12-molecule simulation with s = 0.10
and t = 0.90. These figures show the time evolution of the first four components of the 13-component state vector X(t) (corresponding to
[X∞]i > 0.002). Each component of the state vector gives the probability of a particular distribution of the 12 molecules between compartments
A and B. Case i = 1 corresponds to all 12 molecules in box A and i = 2 corresponds to 11 molecules in compartment A and 1 molecule in
compartment B. The blue (dotted) curve plots the standard (no noise) Ehrenfest diffusion model. The green (dashed), red (dash-dot), and pink
(solid) curves show noisy versions of the model. The noise benefit appears in the distinct shift to the left of the noise-enhanced simulations over
the standard model. This shows that the simulations reach steady state sooner. The green (dashed) curve shows a simulation using the optimal
noise Nopt according to the Markov chain noise benefit theorem and the red (dash-dot) curve shows the result by choosing suboptimal noise
uniformly in [0,Nopt]. The pink (solid) curve shows the results of Algorithm 2. Algorithm 2 does not require prior knowledge or an estimate of
the steady-state distribution. The figures show that this system nears steady state within 60 time steps.

faster convergence. Markov chain simulations employ a
stochastic discrete time model to estimate the probability
density over a system’s state-space.

Suppose M is a time-homogeneous Markov chain over a
finite state-space with N < ∞ states [26,36,37]. Let the N × 1
column-vector x(t) represent the state of the Markov chain at
time t . Each component xi(t) represents the probability that
the chain is in the corresponding state i at time t . Then

N∑
i=1

xi(t) = 1 (1)

for all t because x(t) is a probability density over the N states.
Let P represent the single-step state transition probability

matrix where

Pi,j = P [xt+1 = j |xt = i] (2)

is the probability of the chain in state i at time t moving to
state j at time t + 1. Then there exists a stationary vector x∞

such that [37]

x∞ = x∞P. (3)

So x∞ is always a left eigenvector of the transition probability
matrix P that corresponds to the eigenvalue λ = 1.

The n-step transition probability matrix P (n) has entries

P
(n)
i,j = P [Xt+n = j | Xt = i] (4)

=
N∑

k=0

P [Xt+n = j |Xt = i,Xt+1 = k]

·P [Xt+1 = k|Xt = i] (5)

=
N∑

k=0

P [Xt+n = j |Xt+1 = k]P [Xt+1 = k|Xt = i]

(6)

=
N∑

k=0

P
(n−1)
k,j Pi,k (7)
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FIG. 2. (Color online) Noise benefits in Wright-Fisher population genetics. The figures show that the Wright-Fisher model benefits from
noise in two ways: (1) noise moves the simulation toward the steady-state value faster than simulations without noise and (2) noise eliminates
the asymptotic crawl toward the steady-state value. The figures represent allele distributions over 500 reproductive generations. The simulation
models the distribution of a diallelic gene (A1 and A2) in a population with N = 50 diploid individuals (2N = 100 gene copies). The simulation
initialized with Xt ∼ N (50,1) is a normal distribution centered at a population with equal numbers of A1 and A2. The symmetry of X0 implies
that the steady-state population will move toward either homozygous coalescent state (A1A1 or A2A2) with equal probability. The blue (dotted)
curve plots the standard (no noise) Wright-Fisher model. The green (dashed), red (dash-dot), and pink (solid) curves show noisy versions of
the model. The green (dashed) curve shows a simulation using the optimal noise Nopt prescribed by the noise-benefit theorem and the red
(dash-dot) curve shows the result by choosing suboptimal noise uniformly in [0,Nopt]. The pink (solid) curve shows that noisy algorithm can
benefit a Markov chain even if it cannot determine the steady-state values that the theorem assumes. (a) The probability for a homozygous A1

(A1A1) population. The initial distribution implies a near zero probability for a pure A1A1 population but rapidly increases to its steady-state
value of 1/2. The noise-enhanced simulations (red and green) approach the steady-state value faster than the standard model (blue) and also
reach the asymptotic value before settling. (b) The probability for a population with 25 copies of allele A1 and 75 copies of allele A2. The
noise-enhanced simulations (red and green) approach the steady-state value faster than the standard model (blue) and also reach the asymptotic
value before settling.

where P
(n)
i,j is the probability that the chain transitions from

state i to state j in exactly n time steps. State j is accessible
from state i if there is some nonzero probability of transitioning
from state i to state j in any number of steps:

P
(n)
i,j > 0 (8)

for some n > 0.
A Markov chain is irreducible if every state is accessible

from every other state [26,37]. Irreducibility implies that for
all states i and j there exists m > 0 such that

P [Xn+m = j |Xn = i] = P
(n)
i,j > 0. (9)

This is equivalent to P is a regular stochastic matrix if M is a
finite Markov chain.

The period di of state i is

di = gcd
{
n � 1 : P

(n)
i,i > 0

}
(10)

or di = ∞ if P
(n)
i,i = 0 for all n � 1 where gcd denotes the

greatest common divisor. State i is aperiodic if di = 1. A
Markov chain with transition matrix P is aperiodic if di = 1
for all states i.

Suppose a Markov chain M is irreducible and aperiodic.
Then the fixed point x∞ is unique and

lim
k→∞

P (k) = 1 ⊗ x∞ (11)

where 1 is the column vector with all entries equal to 1 [36,38].
The outer product generates a rank-one N × N matrix with
each column equal to the stationary state density.

The Markov chain noise benefit theorem below shows that
there is a component-wise noise benefit for any component
that has not yet converged to its stationary value. The theorem
assumes that the sign of a state-related inequality is in one
of two directions. The corollary assumes it is in the other
direction. The proof of the theorem is lengthy and appears in
the Appendix.

Markov Chain Noise Benefit Theorem. Suppose M is a finite
time-homogeneous Markov chain with N states and transition
matrix P . Suppose further that M is irreducible and aperiodic.
Then for all nonstationary state density vectors x there exists a
noise benefit in the sense that there exists some A > 0 so that
for all a ∈ (0,A)

|[̃xP − x∞]i | < |[xP − x∞]i | (12)

for all states i with

�i = (x − x∞)Pi > 0 (13)

where

x̃ = 1

1 + a
(x + n) (14)
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is the normalized state vector after adding a noise vector n

with only one nonzero component

nj =
{
a j = k

0 j �= k
(15)

for any k that satisfies

�k = (x − x∞)Pk > 0. (16)

The following corollary provides a complementary result
when the converse of inequality (13) holds (�i < 0) in the
Markov chain noise benefit theorem.

Corollary. Suppose the hypotheses of the Markov chain
noise benefit theorem hold. Then there exists a noise benefit
for each nonstationary state density vector x in the sense that
there exists some A > 0 so that for all a ∈ (0,A)

|[̃xP − x∞]i | < |[xP − x∞]i | (17)

for all states i with

�i = (x − x∞)Pi < 0. (18)

Proof. The �i sign change does not affect the expansion in
the proof of the theorem. So

|[̃xP − x∞]i | =
∣∣∣∣�i − ai

1 + ai

(xPi − Pk,i)

∣∣∣∣ (19)

holds.
Now �i < 0 by hypothesis. Thus∣∣∣∣�i − ai

1 + ai

(xPi − Pk,i)

∣∣∣∣ < |�i | (20)

if and only if

ai

1 + ai

(xPi − Pk,i) > 2�i (21)

and
ai

1 + ai

(xPi − Pk,i) < 0 (22)

since |�i | > |�i − b| if and only if 2�i < b < 0. The nega-
tivity constraint (22) holds if and only if xPi < Pk,i . The lower
bound (21) holds if and only if

ai(xPi − Pk,i) > 2�i(1 + ai). (23)

Therefore Eq. (21) holds if and only if

ai(xPi − Pk,i − 2�i) > 2�i. (24)

If 2�i < xPi − Pk,i then

ai >
2�i

xPi − Pk,i − 2�i

(25)

and if 2�i > xPi − Pk,i then

ai <
2�i

xPi − Pk,i − 2�i

. (26)

But if 2�i < xPi − Pk,i then 2�i

xPi−Pk,i−2�i
< 0. So any ai < 0

suffices. Thus either

ai < 0 if 2�i > xPi − Pk,i (27)

or

ai >
2�i

xPi − Pk,i − 2�i

if 2�i < xPi − Pk,i . (28)

Therefore if ai ∈ (−Ai,0) with Ai = − 2�i

xPi−Pk,i−2�i
> 0 then

Eqs. (27) and (28) hold. So if A = mini{Ai} > 0 then the
theorem holds for all states i that satisfy the inequality
�i = (x − x∞)Pi < 0. �

III. MARKOV CHAIN NOISE BENEFIT ALGORITHMS

This section presents two versions of the Markov chain
noise benefit algorithm. The first algorithm shows how a
Markov chain simulation can apply the Markov chain noise
benefit theorem directly to realize an optimal noise benefit.
The second algorithm shows a practical implementation that
uses only the current and past states of the simulation.

Algorithm 1 shows a naive application of the Markov
chain noise benefit theorem. The green lines on Figs. 1, 2,
and 3 show simulation results from this algorithm. This
algorithm has the practical limitation that it requires prior
knowledge of the steady-state distribution. The algorithm
finds the component with the smallest state error at each
step. It then adds signed noise to compensate for the error.

Algorithm 1 The optimal Markov chain noise benefit
algorithm
1: procedure MarkovChain(x0, P , x∞)
2: xt ← x0

3: repeat
4: xt ← xt P
5: xt ← NoisyStep (xt, P, x∞)
6: until isConverged (xt)
7: return xt

8: procedure NoisyStep(xt, P , x∞)
9: nt ← CalcNoise (xt, P, x∞)

10: xt ← 1
1+ nt

(xt + nt)

11: return
1+ nt

xt

12: procedure CalcNoise(xt, P, x∞)
13: Δ ← (xt − x∞) P
14: L ← Length (Δ)
15: A ← Δ[0]
16: k ← 0
17: for j ← 1, L do
18: if |Δ[j]| < A then
19: A ← −Δ[j]
20: k ← j

21: n ← ZeroVector (L)
22: n[k] ← A
23: return n

Algorithm 2 overcomes the limitation of Algorithm 1
because it does not require knowledge of the steady-state
values. It uses only the past state probabilities to determine
the noise at each time step. Algorithm 2 picks the state
that changes the most at each time step and then adds
noise to drive that state further in its current direction. The
pink lines on Figs. 1, 2, and 3 show that Algorithm 2 speeds
convergence in the three Markov chain simulations on average.
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Algorithm 2 The blind Markov chain noise benefit
algorithm
1: procedure MarkovChain(x0, P )
2: xt ← x0

3: repeat
4: xt ← xt P
5: xt ← NoisyStep (xt, P, xt−1)
6: until isConverged (xt)
7: return xt

8: procedure NoisyStep(xt, P , xt−1)
9: nt ← CalcNoise (xt, nt−1, xt−1)

10: xt ← 1
1+ nt

(xt + nt)

11: return

xt ← 1
1+ nt

t xt

12: procedure CalcNoise(xt, nt−1, xt−1)
13: Δ ← xt − nt−1 − xt−1

14: L ← Length (Δ)
15: A ← Δ[0]
16: k ← 0
17: for j ← 1, L do
18: if |Δ[j]| > A then
19: A ← −Δ[j]
20: k ← j

21: n ← ZeroVector (L)
22: n[k] ← Uniform (0, A)
23: return n

IV. MARKOV CHAIN EXPERIMENTAL RESULTS

The simulations below show that the proposed noise benefit
applies to a wide range of Markov chain models. The three
simulations show the evolution of the state density by direct
computation of xt+1 = xtP . Figures 1, 2, and 3 show the
probability of several states over time. The first simulation
applies noise to the two-parameter Ehrenfest diffusion model.
The simulation reaches a steady state about 24% faster than
the simulation without noise and provides evidence that the

Markov chain noise benefit theorem can apply to birth-
death processes. The second simulation demonstrates that the
Wright-Fisher population genetics model benefits from noise
by decreasing the time to convergence. The third simulation
shows that noise can speed simulations of a proposed chemical
reaction whose state transition matrix derives from empirical
measurement data.

A. Noise benefits in the Ehrenfest diffusion model

The first simulation shows a noise benefit in the Ehrenfest
diffusion model. Ehrenfest proposed a diffusion model in the
early 1900s as a statistical interpretation of the second law of
thermodynamics [39,40]. The model demonstrates the increase
in entropy of a closed system over time [41].

The simulation shows that the noise benefit theorem
applies to a class of Markov models called birth-death
processes. A birth-death process has the constraint Pi,j = 0
if |i − j | > 1 [40,42–45]. The simulation also demonstrates
a noise benefit in a model that converges only in distribution.
Figure 1 illustrates the noise benefit in an N = 12 molecule
Ehrenfest diffusion simulation. Table I shows how each state i

corresponds to a distribution of 12 molecules divided between
two compartments A and B.

The simulation employed a two-parameter generalized
model with s = 0.10 and t = 0.90. The figure shows that the
components approach their steady-state values 24.2% faster
on average with added noise (error <0.5% of steady state).

The simplest Ehrenfest diffusion model uses a rectangular
container with a permeable membrane separating two equally
sized compartments called compartment A and compartment
B [46–48]. The container holds N gas molecules that the
membrane allows to pass between compartments (Fig. 4).

The model randomly selects a molecule at each time step
t and then moves that molecule to the other compartment.
x(t) denotes the number of molecules in compartment A at
each time step. So x(t) ∈ {0,1,2, . . . ,N}. The simulation tends
toward a steady-state distribution with maximal entropy as
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FIG. 3. (Color online) Noise benefits in an empirical chemical network Markov model. The figures show that noise enhances a crystallization
model for zeolite resulting from a complex chemical process. The benefit appears in the shift to the left of the noise-enhanced simulations over
the standard model. This indicates that the simulations reach steady state sooner. This simulation shows that the predicted noise benefit may
be small but the benefit will exist for any simulation that has not converged. These curves represent concentrations of three species involved in
a hypothetical zeolite synthesis over time. The blue (dotted) curve plots the standard (no noise) Markov chemical reaction model. The green
(dashed), red (dash-dot), and pink (solid) curves show noisy versions of the model. The green (dashed) curve shows a simulation using the
optimal noise Nopt in accord with the Markov chain noise benefit theorem. The red (dash-dot) curve shows the result when the simulated added
suboptimal noise drawn uniformly from [0,Nopt]. The pink (solid) curve shows the results of Algorithm 2. Over time the zeolite concentrations
dominate the other species.
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TABLE I. Number of molecules (N = 12) per compartment in
simulation state i.

No. molecules No. molecules
State i in A in B

1 12 0
2 11 1

· · · · · · · · ·
12 1 11
13 0 12

t → ∞ [49]. The Ehrenfest model is a birth-death process
because x(t) either increases or decreases by one at each time
step [50]. Suppose the container contains N molecules and has
0 < M < N molecules in compartment A at time t . Then

x(t) = M

and

P [x(t + 1) = M − 1] = M

N

P [x(t + 1) = M + 1] = 1 − M

N
.

The Markov chain x(t) evolves according to the state
transition matrix P where

Pij =

⎧⎪⎨⎪⎩
N−i
N

j = i + 1
i
N

j = i − 1

0 else

for 0 � i,j � N [51]. This model converges in distribution
since x(t) �= x(t + 1) for all t .

The Krafft-Schaefer extension adds two new parameters
to the Ehrenfest diffusion model to describe asymmetry
between transitions from A → B and B → A [52]. The two

FIG. 4. (Color online) Two compartment Ehrenfest diffusion
model. The figure illustrates the diffusion experiment of Ehrenfest.
The box contains N = 20 molecules. The compartments A and
B partition the box. x(t) represents the number of molecules in
box A at time t . This example assumes x(t) = 16. The simulation
randomly selects a molecule at each time step (red circle) and moves
the selected molecule to the other compartment (red arrow). Here
x(t + 1) = 16 − 1 = 15 since one molecule moves from A to B.
The model exhibits a dynamic equilibrium because molecules
continue to shuttle across the membrane for all t so x(t) �= x(t + 1).
So the occupancy x(t) converges in distribution.

FIG. 5. (Color online) Two-compartment Krafft-Schaefer asym-
metric diffusion model. The figure illustrates the membrane “prefer-
ence” in the asymmetric Krafft-Schaefer diffusion model. Here s � t .
So P [B → A] � P [A → B] for a particular molecule (indicated by
the relative size of the arrows). The asymmetry shifts the equilibrium
to the left so that more molecules tend to accumulate in A at steady
state.

parameters s and t characterize the transition asymmetry and
scale the respective conditional transition probabilities from
A → B and B → A [51,53]. This corresponds physically to
the membrane “preferring” diffusion in one direction over the
other (Fig. 5).

The generalized diffusion model evolves as a birth-death
process with state transition matrix P where

Pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N−i
N

s j = i + 1
i
N

t j = i − 1
1
N

[(1 − s)N + i(s − t)] j = i

0 else

for s,t ∈ [0,1] and integers 0 � i,j � N [53]. The Krafft-
Schaefer model converges with probability one only for the
trivial case where one of the compartments is a perfect sink
(when s = 0 or t = 0). The model weakens to convergence in
distribution for all other s and t such that 0 < s,t < 1.

Figure 1 shows a simulation that initialized x0 as a normal-
ized random state vector. This represents starting the diffusion
simulation with uncertainty in the system’s configuration. The
simulation used s = 0.10 and t = 0.90 to slow convergence
and highlight the noise benefit. The asymmetry due to s = 0.10
and t = 0.90 collapses the dominant eigengap |λ1| − |λ2|
where λi is the ith largest magnitude eigenvalue. This increases
the time for the simulation to reach steady state. A similar
benefit exists for all s and t in (0,1). A wider eigengap
|λ1| − |λ2| ensures that the chain quickly converges toward
a steady state. This results in a smaller noise benefit.

B. Noise benefits in a population genetics model

The second simulation shows a noise benefit in the Wright-
Fisher population genetics model. The Wright-Fisher model
uses a Markov chain to simulate stochastic genotypic drift
during successive generations [54–56]. Figure 2 illustrates the
noise benefit in a simulation with 2 alleles and N = 50 diploid
individuals.

The Wright-Fisher model applies generally to populations
under the following assumptions [57]:
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FIG. 6. (Color online) Wright-Fisher mating. The figure illus-
trates how the Wright-Fisher model produces successive generations.
Each doublet in the first row represents the genotype of a diploid
individual from a population N = 4. Each organism possesses a
pair of alleles [blue (gray) = A1 and red (black) = A2]. The two
middle rows show how the model randomly pairs individuals with
replacement to form mates. Each doublet in the last row represents an
offspring. The offspring inherit one allele (A1 or A2) randomly from
each parent. Then the simulation “kills” the t = n population and the
offspring become the new t = n + 1 population.

(1) the population size N remains constant between gener-
ations,

(2) no selective difference between alleles,
(3) nonoverlapping generations.
Consider a gene with 2 alleles (A1 and A2) in a population

with N diploid individuals. The population contains 2N copies
of the gene since each diploid individual has two copies of the
gene. Let the state vector x(t) represent the allele distribution
at time t [58]. Then at time t

x0(t) = P [0 copies A1,2N copies A2],

x1(t) = P [1 copies A1,2N − 1 copies A2],

x1(t) = P [2 copies A1,2N − 2 copies A2],

· · ·
x2N (t) = P [2N copies A1,0 copies A2].

The Wright-Fisher model produces successive generations
with a two-step process (Fig. 6). The model first creates N

pairs of parents selected randomly and with replacement from
the population. Then each pair produces a single offspring with
its genotype inherited by selecting one gene from each parent.
All parents die after mating.

The allele distribution x(t) is a Markov chain that advances
by random sampling with replacement from the pool of parent
genes (Fig. 6) [59,60]. The density of alleles evolves according
to a binomial probability density with

P [x(t + 1) = j |x(t) = i] ∼ Bin

(
j ; 2N,

i

2N

)
. (29)

Thus the Markov chain transition matrix has elements [58]

Pi,j =
(

2N

j

) (
i

2N

)j(
1 − i

2N

)2N−j

.

Figure 7 also demonstrates how the allele distribution x(t)
converges to the steady state. x(t) converges with probability
one to either of the homozygous populations: either (A1,A1)
or (A2,A2) [61]. This convergence is much stronger than the
convergence in distribution found in the Ehrenfest diffusion
model.

FIG. 7. (Color online) Markov dynamics of a Wright-Fisher
genotype. Each of the six circles for t = 0 represents an allele for a
particular gene [blue (gray) = A1 and red (black) = A2]. The Wright-
Fisher model generates the t = 1 offspring by randomly sampling
the t = 0 population with replacement. The connections indicate the
surviving genes and their offspring. The A1 allele becomes extinct
by the fourth generation in this example. The steady state for this
example is homozygous (A2,A2) because future generations can no
longer inherit the extinct A1 gene.

The Wright-Fisher simulation used a population N =
50 diploid individuals. The simulation tracked the allele
distribution of a diallelic gene: A1 and A2. It initialized the
allele distribution x(0) according to a normal distribution
with a mean of 50 copies of A1 and 50 copies of A2. This
initial distribution represents imperfect information about the
population’s initial genotypic makeup. The simulation evolved
four separate copies of the initial population following the
Fisher-Wright procedure: (1) standard (no noise), (2) applying
Algorithm 1 by adding optimal noise Nopt at each iteration
as prescribed by the theorem, (3) adding suboptimal noise
uniformly chosen from [0,Nopt], (4) applying Algorithm 2.
Each copy ran for 500 generations.

Figure 2 shows two modes of noise benefit in the Wright-
Fisher simulation: (1) noise shifts the over-damped system
(damping ratio ζ > 1) into a near critically damped regime
(ζ ≈ 1) and (2) noise speeds the asymptotic approach toward
the steady-state distribution. Each plot in the figure repre-
sents the estimate of the probability for a single genotypic
distribution: Fig. 2(a) shows P [100 copies A1,0 copies A2]
and Fig. 2(b) shows P [50 copies A1,50 copies A2] during the
500-step simulation. The population will reach one of two
homozygous steady states: (A1,A1) or (A2,A2). Stochastic
dynamics during the simulation control the probabilities of the
possible steady states. This particular simulation shows that
P[steady state = (A1,A1)] = 0.5 = P[steady state = (A2,A2)].
This is the expected result because of the symmetric initial
uncertainty for A1 and A2.

Figure 2(a) shows that Algorithm 2 can introduce oscilla-
tions in the density estimate. The oscillations have a short-lived
effect in this simulation. The ringing quickly dies down and the
estimate settles to the theoretical limit = 0.5. The simulations
in the other sections do not show this ringing artifact. We do not
know if this ringing artifact arises from some relation between
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the state transition probabilities, the number of states, or some
other condition unique to this model.

Figure 2 also shows that even nonoptimal noise can benefit
the simulation dynamics. The probability of the homozygous
state in Fig. 2(a) is one of the two distributions with nonzero
steady-state probability: P [steady state = (A1,A1)] �= 0. The
suboptimal noise simulation (red curve) shows similar benefits
to the optimal noise simulation (green curve) since the traces
of the two simulations resemble each other. This also appears
to be an artifact of some special condition in this model.

C. Noise benefits in a chemical reaction model

The third simulation shows a noise benefit in a zeolite
crystallization model. Figure 3 shows a benefit in a six-state
chemical network simulation. The simulation extended an ear-
lier study [62,63] that investigated a proposed crystallization
process for natural zeolite [64]. The figure shows that the
components approach their steady-state values (within 0.5%
of steady state) 18.1% faster on average with added noise.

Thus the noise benefit can extend generally to a large
domain of problems that employ observed transition matrices.
We rarely deal with a pure Markov process in practice. We
are even less likely to have complete knowledge of the state
transition matrix. Researchers that model complex processes
often estimate the transition matrix with approximate con-
ditional transition probabilities calculated from a series of
observations [65–72].

Zeolites are a class of aluminosilicates that form naturally
under geologic conditions [73,74]. Geologists have identified
40 naturally occurring zeolite frameworks. Chemists have
synthesized over 175 unique varieties [75,76]. Zeolites find
uses in many industries. These include water purification
[77–79], detergents [80,81], catalysis [82–85], and nuclear
reprocessing [86–88].

The exact natural hydrothermal synthesis of many zeolites
is not known [89–92]. Researchers have employed Markov
models to predict properties from the complex chemistry
involved in their formation [93–95]. Geologists constructed
an observed transition matrix in one such model based on 29Si
concentration profiles during a formation experiment [63].

They then determined rate constants, equilibrium constants,
and free energies for elementary zeolite-forming reactions
for a hypothetical zeolite-formation process using Markov
simulations with the estimated transition matrix and initial
species concentrations. Our simulations show that noise
benefits such a Markov model.

Hawkins [62] empirically found the following state transi-
tion probability matrix for six silica oligomers from aggregate
NMR data using weighted least squares:

P =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9274 0.0700 0.0025 8 × 10−5 10−5 10−5

0.0500 0.8395 0.1000 0.0100 0.0004 0.0001

0.0600 0.0600 0.8495 0.0300 0.0004 0.0001

0.0500 0.0100 0.0400 0.5400 0.0600 0.3000

0.0500 0.0200 0.0200 0.0500 0.8595 0.0005

0.0001 0.0001 0.0001 0.0001 0.0001 0.99953

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

corresponding to steady-state probability density x∞

x∞ = [0.026 0.017 0.013 0.002 0.002 0.942]. (31)

Figure 8 summarizes the principal reaction pathways.
We used the experimental 29Si NMR data reported earlier

[62] to initialize the species concentrations to

x0 = [0.430 0.260 0.220 0.060 0.030 0.000],

and advanced the Markov chain to simulate the crystallization
of zeolite.

Our simulations show that noise benefits the empirical es-
timation but the observed benefit was small. The performance
metric showed a strong benefit of 18.1% despite some states
experiencing only minimal noise benefits [Figs. 3(a) and 3(c)].
This is because the noise quickly moved a few components to
their steady-state value [Fig. 3(b)]. The Markov chain noise
benefit theorem could not provide an additional benefit to
the system after this initial boost because the theorem relies
on the magnitude of the component closest to its steady-state
value. Several components converged within a few time steps.
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FIG. 8. Zeolite reaction scheme of Hawkins
[62]. Simulations show that noise speeds the
convergence of this model to its steady-state
concentrations. The model synthesizes zeolite
from five silicate oligomers. The reaction arrows
show the dominant model pathways. The state
transition matrix (30) defines each pathway as a
Markov transition probability from one species
to another during one time step. The vector (31)
lists the steady-state concentrations of the six
reactants. The system saturates with zeolite
because the model lacks strong pathways that
consume zeolite.
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So the theorem-based noise added only small corrections to
the states for the rest of the simulation. This shows that the
theorem confers a larger benefit to systems with states that
converge at approximately the same rate. But other Markov
systems still receive some noise benefit.

V. MARKOV CHAIN NOISE BENEFIT
THEOREM SIMULATION

Two final simulations show the noise benefit that exists
for Markov chain simulations. The simulations show how the
Markov chain noise benefit theorem might speed convergence
in modern algorithms such as the Google PageRankTM link
analysis algorithm [96–98]. The PageRank algorithm con-
structs a probability density that represents the likelihood that
a person randomly clicking on links will arrive at a particular
page over all indexed pages on the Internet [99]. The algorithm
operates on a dataset called the Google matrix. This matrix is
equivalent to a Markov state transition matrix spanning tens of
billions of dimensions [100,101]. The noise benefit theorem
shows that the algorithm should benefit from noise.

A. One-step Markov chain simulation

The first simulation shows that a Markov chain can benefit
from additive noise (Fig. 9). The simulation shows the benefit
after one time step as a decrease of the absolute error between
the posterior state density and the stationary state density.
Tables II and III show a large decrease in the absolute error in
the noisy simulations compared to the no-noise simulations.

Table II summarizes the one-step experiment with and
without noise. The simulation classified the states as satisfying
either the conditions of the Markov chain noise benefit theorem
�i = (x − x∞)Pi > 0 or the Corollary �i = (x − x∞)Pi <

0. It set the noise strength to A = min{ai} for each class in
accord with the theorem. This gave A = 0.0682 for the states
with �i > 0 and A = −0.1594 for the states with �i < 0.
The simulation calculated the total absolute error for each
class using the respective values for the noise strength A.

Table III summarizes a simulation with and without noise
that does not have access to signs of the inequality. It shows
that a noise benefit exists even if the simulation cannot classify
individual states according to �i > 0 or �i < 0. The table
summarizes the relative improvement over all N = 6 states
when setting the noise strength to A = sign(ai) · min(|ai|).
This gave A = min(0.0682,0.1594) = 0.0682. The simulation
calculated the total absolute error for the posterior state density
using this value of A.

The Markov chain noise benefit theorem ensures that there
exists a noise distribution that reduces the state error. Figure 9
illustrates this because it shows that the error decreases as the

TABLE II. Noise benefits in one-step Markov chain simulation.

States satisfying States satisfying
MC Theorem corollary

No noise 0.1547 0.1547
With noise 0.0547 0.0724
Error decrease (%) 64.64% 53.20%

TABLE III. Noise benefits in one-step Markov chain simulation
with unknown sign error.

No noise 0.3093
With noise 0.2370
Error decrease (%) 23.38%

noise strength increases from zero. The theorem and corollary
also establish that past some noise strength (A > 0) the error
will increase. Thus properly signed noise with magnitude less
than A guarantees that the absolute error will be lower in the
noisy simulation than in the no-noise simulation.

Figure 9 shows an example where three of the N = 6 states
obey the inequality (13) in the main theorem and the remaining
three states obey the inequality (18) in the corollary. Not all
transition matrices P have this even splitting. But any given
matrix will have at least one state that satisfies each case since
the sum of the signed errors must equal 0.

The simulation generated a Markov chain from a fixed ran-
dom transition matrix where P̂i,j = P [Xk+1 = j |Xk = i] ∼
U (0,1). The simulation used N = 6 states. The theorem and
corollary guarantee the benefit for transition matrices with
any finite dimension. But uniformly chosen transition matrices
tend to generate a uniform stationary density

x∞
j = 1

N
. (32)

We transformed each transition probability by U (0,1) + ε to
construct a network of states with nonuniform importance. We
chose ε > 0.04 to avoid numerical instability. This gives a
transition matrix

P̂i,j = Ui,j

Vi,j + ε
(33)

where Ui,j ∼ U (0,1) and Vi,j ∼ U (0,1). We normalized the
rows of P̂ to form a proper stochastic matrix:

Pi,j = P̂i,j∑
k=1 Pi,k

. (34)

We chose the initial state density x as the uninformed prior [36]
(uniform distribution) over the six states so that

xj = 1

N
. (35)

We used MATLAB R2009b to perform the simulations with
transition matrix P

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.038 0.040 0.077 0.070 0.065 0.710

0.017 0.109 0.140 0.128 0.234 0.372

0.014 0.022 0.062 0.174 0.005 0.723

0.027 0.053 0.068 0.184 0.058 0.611

0.071 0.075 0.015 0.132 0.011 0.696

0.181 0.177 0.484 0.017 0.068 0.073

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
corresponding to steady-state probability density x∞

x∞ = [0.089 0.102 0.241 0.094 0.065 0.408].
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FIG. 9. (Color online) Noise benefits in Markov chain density estimation. These figures show the relation between the error magnitude of
each Markov state and the noise strength ai . The simulation used a six-state Markov chain and the figure shows the single-step absolute errors by
state. Each of the six states satisfied either (a) the Markov chain noise benefit theorem: (x − x∞)Pi > 0 or (b) the Corollary: (x − x∞)Pi < 0.
(a) Three states satisfy the inequality (x − x∞)Pi > 0 in this simulation. Each curve represents the absolute error |[̃xP − x∞]i | of the ith state
as ai increases. The standard zero-noise condition corresponds to ai = 0. Each state has an optimal noise level Ai indicated by the point where
the curve meets the ai axis. The optimal noise Ai will exactly drive the state to its stationary value. The Markov chain noise benefit theorem
first shows that the benefit exists for all ai < Ai . The theorem also guarantees the existence of a global A = min{Ai} > 0 such that any noise
a < A benefits every state that satisfies the inequality. All curves decrease (strictly) monotonically until they reach Ai . Thus any point between
the no-noise condition and Ai shows some benefit and A = min{Ai} satisfies this constraint for each such state. (b) Three states satisfy the
alternative inequality (x − x∞)Pi < 0. These correspond to the states that satisfy the corollary. The corollary ensures a point A so that any
noise-strength less than A benefits every such state.

B. Two-step Markov chain simulation

The second simulation shows that the noise benefits in
the one-step simulation extend over successive time steps
(Fig. 10). We measure the benefit as a decrease in the absolute
error between the posterior state density and the stationary state
density. The simulation also shows that even suboptimal noise
in one time step can still benefit successive steps. The proof
guarantees that there exists a noise density that will reduce the
error over multiple time steps.

We generated a transition matrix P using the same
procedure as in the one-step simulation (34):

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.147 0.013 0.051 0.667 0.062 0.061

0.158 0.030 0.088 0.622 0.012 0.090

0.078 0.061 0.095 0.582 0.077 0.108

0.138 0.106 0.055 0.565 0.039 0.098

0.171 0.085 0.213 0.085 0.170 0.276

0.048 0.028 0.070 0.804 0.030 0.020

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This corresponds to the steady-state probability density

x∞ = [0.129 0.077 0.068 0.582 0.048 0.094].

VI. CONCLUSION

We have shown that noise can benefit Markov chain estima-
tion by speeding up the convergence time if the algorithm can
calculate the sign of the state error. We have also shown how a
simulation can use estimates of the error magnitude to update
its current estimate of the underlying state density. Simulations
confirm that noise can benefit a single-step or multistep system
even if the system has insufficient information to determine the
optimal noise.

Versions of the Markov chain noise benefit theorem may
well hold for weaker assumptions and other Markov chain
models. An open question is whether the results hold for
noise-perturbed Markov transition matrices instead of noise-
perturbed state densities. This may apply to simulations with
noisy estimates of the transition matrix or to simulations with
transition matrix estimates based on only a few observations.
This might also apply to specific MCMC algorithms under
suitable assumptions. Adaptive algorithms may be able to find
optimal noise amounts in many of these cases.

APPENDIX: PROOF OF THE MARKOV CHAIN NOISE
BENEFIT THEOREM

Markov Chain Noise Benefit Theorem. Suppose M is a finite
time-homogeneous Markov chain with N states and transition
matrix P . Suppose further that M is irreducible and aperiodic.

041112-10



NOISE CAN SPEED CONVERGENCE IN MARKOV CHAINS PHYSICAL REVIEW E 84, 041112 (2011)

00.05 0.10.15 0.20.25 0.30.35 0.40.45 0.5 0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0

1

2

3

4

5

6

7

8

x 10
−3

se
co

nd
 s

te
p:

 a i
first step: a

i

|(
x+

n)
 P

 −
 x

∞
|

FIG. 10. (Color online) Multicycle noise benefits in Markov chain
density estimation. This figure shows that the noise benefits apply for
successive Markov steps. It further shows that even suboptimal noise
in one iteration can still benefit successive steps. The simulation
evaluated the deciding inequalities (13) and (18) for a single state at
two successive time steps and used only the sign (+ or −) to determine
the direction of beneficial noise for the state. The plot shows the
relation between the state’s absolute error and the noise magnitude
during the “first step” and “second step” (with the appropriate sign).
The origin of the a

(step1)
1 and a

(step2)
2 axes corresponds to a zero-noise

two-step Markov chain. The optimal noise corresponds to a
(step1)
i ≈

0.165 during the first step. Then there is a strictly positive value
for a

(step2)
i that yields a lower error than the zero-noise case even

if the system applies suboptimal noise during the first step such as
ai = 0.10.

Then for all nonstationary state density vectors x there exists a
noise benefit in the sense that there exists some A > 0 so that
for all a ∈ (0,A)

|[̃xP − x∞]i | < |[xP − x∞]i | (A1)

for all states i with

�i = (x − x∞)Pi > 0 (A2)

where

x̃ = 1

1 + a
(x + n) (A3)

is the normalized state vector after adding a noise vector n

with only one nonzero component

nj =
{
a j = k

0 j �= k
(A4)

for any k that satisfies

�k = (x − x∞)Pk > 0. (A5)

Proof. Fix x as a state vector of the Markov chain M . Note
first that x̃ is a probability density function over the states of
M because of (a) and (b) as follows:

(a) x̃ is a N -vector with x̃i � 0 since

[̃x]i =
[

1

1 + a
(x + n)

]
i

(A6)

=
{

1
1+a

xi i �= k

1
1+a

(xi + a) i = k
(A7)

� 1

max(1,A)
xi (A8)

� 0 (A9)

since a > 0 and A > 0.
(b)

∑
x̃i = 1 since

N∑
i=1

x̃i = 1

1 + a

(
N∑

i=1

xi +
N∑

i=1

ni

)
(A10)

= 1

1 + a
(1 + a) (A11)

= 1. (A12)

Note that

|[̃xP − x∞]i | < |[xP − x∞]i | (A13)

= |[xP − x∞P ]i | (A14)

= |[(x − x∞)P ]i | (A15)

= |�i |. (A16)

The proof proceeds by showing that such an Ai exists for
each component i that satisfies �i = (x − x∞)Pi > 0. This
will complete the proof because (0,A) = ∩N

i=1(0,Ai) �= ∅ since
N < ∞ and μ[(0,Ai)] > 0 for each Ai .

Let i in 1 � i � N be any state that satisfies the inequality
�i = (x − x∞)Pi > 0. Choose k in 1 � k � N and define

x̃ = 1

1 + ai

(x + n) (A17)

with

nj =
{
ai j = k

0 j �= k
(A18)

and ai > 0. Then

|[̃xP − x∞]i | = |[̃xP ]i − [x∞]i | (A19)

= |[̃xP ]i − [x∞P ]i | (A20)

since x∞ = x∞P . Expand x̃:

|[̃xP − x∞]i |

=
∣∣∣∣∣

n∑
j=1

x̃jPj,i −
n∑

j=1

x∞
j Pj,i

∣∣∣∣∣ (A21)

=
∣∣∣∣∣

n∑
j=1

[
1

1 + ai

(x + n)

]
j

Pj,i −
n∑

j=1

x∞
j Pj,i

∣∣∣∣∣ (A22)

=
∣∣∣∣∣

n∑
j=1

1

1 + ai

(xj + nj )Pj,i −
n∑

j=1

x∞
j Pj,i

∣∣∣∣∣ (A23)

=
∣∣∣∣∣ 1

1 + ai

n∑
j=1

(xjPj,i + njPj,i) −
n∑

j=1

x∞
j Pj,i

∣∣∣∣∣. (A24)
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Then add 0 = ( ai

1+ai

∑
xjPj,i − ai

1+ai

∑
xjPj,i) and group:

|[̃xP − x∞]i | =
∣∣∣∣∣ 1

1 + ai

n∑
j=1

xjPj,i + 1

1 + ai

n∑
j=1

njPj,i +
(

ai

1 + ai

n∑
j=1

xjPj,i − ai

1 + ai

n∑
j=1

xjPj,i

)
−

n∑
j=1

x∞
j Pj,i

∣∣∣∣∣ (A25)

=
∣∣∣∣∣

n∑
j=1

xjPj,i + 1

1 + ai

n∑
j=1

njPj,i − ai

1 + ai

n∑
j=1

xjPj,i −
n∑

j=1

x∞
j Pj,i

∣∣∣∣∣ (A26)

=
∣∣∣∣∣
(

n∑
j=1

xjPj,i +
n∑

j=1

x∞
j Pj,i

)
− 1

1 + ai

(
ai

n∑
j=1

xjPj,i −
n∑

j=1

njPj,i

)∣∣∣∣∣ (A27)

=
∣∣∣∣∣(xPi − x∞Pi) − 1

1 + ai

(
ai

n∑
j=1

xjPj,i −
n∑

j=1

njPj,i

)∣∣∣∣∣ (A28)

=
∣∣∣∣∣�i − 1

1 + ai

(
ai

n∑
j=1

xjPj,i − aiPk,i

)∣∣∣∣∣ (A29)

=
∣∣∣∣∣�i − ai

1 + ai

(
n∑

j=1

xjPj,i − Pk,i

)∣∣∣∣∣. (A30)

So

|[̃xP − x∞]i | =
∣∣∣∣�i − ai

1 + ai

(xPi − Pk,i)

∣∣∣∣. (A31)

Now �i > 0 by hypothesis. Thus∣∣∣∣�i − ai

1 + ai

(xPi − Pk,i)

∣∣∣∣ < |�i | (A32)

if and only if

ai

1 + ai

(xPi − Pk,i) > 0 (A33)

and
ai

1 + ai

(xPi − Pk,i) < 2�i (A34)

since |�i | > |�i − b| if and only if 0 < b < 2�i . The pos-
itivity constraint (A33) holds if and only if xPi > Pk,i . The
upper bound (A34) holds if and only if

ai(xPi − Pk,i) < 2�i(1 + ai). (A35)

Therefore Eq. (A34) holds if and only if

ai(xPi − Pk,i − 2�i) < 2�i. (A36)

If 2�i < xPi − Pk,i then

ai <
2�i

xPi − Pk,i − 2�i

(A37)

and if 2�i > xPi − Pk,i then

ai >
2�i

xPi − Pk,i − 2�i

. (A38)

But if 2�i > xPi − Pk,i then 2�i

xPi−Pk,i−2�i
< 0. So any ai > 0

suffices. Thus either

ai > 0 if 2�i < xPi − Pk,i (A39)

or

ai <
2�i

xPi − Pk,i − 2�i

if 2�i < xPi − Pk,i . (A40)

Therefore if ai ∈ (0,Ai) with Ai = 2�i

xPi−Pk,i−2�i
> 0 then

Eqs. (A39) and (A40) hold. So if A = mini{Ai} > 0 then
the theorem holds for all states i that satisfy the inequality
�i = (x − x∞)Pi > 0. �
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[91] H. Ghobarkar and O. Schäf, Mater. Res. Bull. 34, 517 (1999).
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