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Abstract—We formulate the following combinatorial multi-
armed bandit (MAB) problem: There are random variables
with unknown mean that are each instantiated in an i.i.d. fashion
over time. At each time multiple random variables can be selected,
subject to an arbitrary constraint on weights associated with the
selected variables. All of the selected individual random variables
are observed at that time, and a linearly weighted combination
of these selected variables is yielded as the reward. The goal is
to find a policy that minimizes regret, defined as the difference
between the reward obtained by a genie that knows the mean
of each random variable, and that obtained by the given policy.
This formulation is broadly applicable and useful for stochastic
online versions of many interesting tasks in networks that can be
formulated as tractable combinatorial optimization problems with
linear objective functions, such as maximum weighted matching,
shortest path, and minimum spanning tree computations. Prior
work on multi-armed bandits with multiple plays cannot be
applied to this formulation because of the general nature of
the constraint. On the other hand, the mapping of all feasible
combinations to arms allows for the use of prior work on MAB
with single-play, but results in regret, storage, and computation
growing exponentially in the number of unknown variables. We
present new efficient policies for this problem that are shown to
achieve regret that grows logarithmically with time, and polyno-
mially in the number of unknown variables. Furthermore, these
policies only require storage that grows linearly in the number
of unknown parameters. For problems where the underlying
deterministic problem is tractable, these policies further require
only polynomial computation. For computationally intractable
problems, we also present results on a different notion of regret
that is suitable when a polynomial-time approximation algorithm
is used.

Index Terms—Combinatorial network optimization, multi-
armed bandits (MABs), online learning.
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I. INTRODUCTION

T HE PROBLEM of multi-armed bandits (MABs) is a
classic one in learning theory. In its simplest form,

there are arms, each providing stochastic rewards that are
independent and identically distributed over time, with un-
known means. A policy is desired to pick one arm at each time
sequentially to maximize the reward. MAB problems capture
a fundamental tradeoff between exploration and exploitation:
On the one hand, various arms should be explored in order
to learn their parameters, and on the other hand, the prior
observations should be exploited to gain the best possible
immediate rewards. MABs have been applied in a wide range
of domains including Internet advertising [1], [2] and cognitive
radio networks [3], [4].
As they are fundamentally about combinatorial optimization

in unknown environments, one would indeed expect to find even
broader use of multi-armed bandits. However, we argue that a
barrier to their wider application in practice has been the limita-
tion of the basic formulation and corresponding policies, which
generally treat each arm as an independent entity. They are in-
adequate to deal with many combinatorial problems of practical
interest in which there are large (exponential) numbers of arms.
In such settings, it is important to consider and exploit any struc-
ture in terms of dependencies between the arms.We show in this
paper that when the dependencies take a linear form, they can
be handled tractably with policies that have provably good per-
formance in terms of regret as well as storage and computation.
In this paper, we consider the following multi-armed bandit

problem. There are random variables with unknown mean
that are each instantiated in an i.i.d. fashion over time. At each
time, a particular set of multiple random variables can be se-
lected, subject to a general arbitrary constraint on weights as-
sociated with the selected variables. All of the selected indi-
vidual random variables are observed at that time, and a linearly
weighted combination of these selected variables is yielded as
the reward.
Our general formulation of multi-armed bandits with linear

rewards is applicable to a very broad class of combinatorial net-
work optimization problems with linear objectives. These in-
clude maximum weight matching in bipartite graphs (which is
useful for user-channel allocations in cognitive radio networks),
as well as shortest path, and minimum spanning tree computa-
tion. In these examples, there are random variables associated
with each edge on a given graph, and the constraints on the set of
elements allowed to be selected at each time correspond to sets
of edges that form relevant graph structures (such as matchings,
paths, or spanning trees).
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Because our formulation allows for arbitrary constraints on
the multiple elements that are selected at each time, prior work
on multi-armed bandits that only allow for a fixed-number
of multiple plays along with individual observations at each
time [5], [6] cannot be directly used for this more general
problem. On the other hand, by treating each feasible weighted
combination of elements as a distinct arm, it is possible to
handle these constraints using prior approaches for multi-armed
bandits with single play (such as the well-known UCB1 index
policy of Auer et al. [7]). However, this approach turns out to
be naive and yields poor performance scaling in terms of regret,
storage, and computation. This is because this approach main-
tains and computes quantities for each possible combination
separately and does not exploit potential dependencies between
them. In this paper, we instead propose smarter policies to
handle the arbitrary constraints that explicitly take into account
the linear nature of the dependencies and base all storage and
computations on the unknown variables directly. As we shall
show, this saves not only on storage and computation, but
also substantially reduces the regret compared to the naive
approach.
Specifically, we first present a novel policy called Learning

with Linear Rewards (LLR) that requires only storage
and yields a regret that grows essentially1 as , where
is the time index. We also discuss how this policy can be mod-

ified in a straightforward manner while maintaining the same
performance guarantees when the problem is one of cost mini-
mization rather than reward maximization. A key step in these
policies we propose is the solving of a deterministic combinato-
rial optimization with a linear objective. While this is NP-hard
in general (as it includes 0-1 integer linear programming), there
are still many special-case combinatorial problems of practical
interest that can be solved in polynomial time. For such prob-
lems, the policy we propose would thus inherit the property of
polynomial computation at each step. Furthermore, we present
in the Appendix suitably relaxed results on the regret that would
be obtained for computationally harder problems when an ap-
proximation algorithm with a known guarantee is used.
We also present in this paper a more general -action formu-

lation, in which the policy is allowed to pick different
combinations of variables each time. We show how the basic
LLR policy can be readily extended to handle this and present
the regret analysis for this case as well.
The examples of combinatorial network optimization that

we present are far from exhausting the possible applications of
the formulation and the policies we present in this paper—there
are many other linear-objective network optimization prob-
lems [8], [9]. Our framework, for the first time, allows these
problems to be solved in stochastic settings with unknown
random coefficients with provably efficient performance.
Besides communication networks, we expect that our work
will also find practical application in other fields where linear
combinatorial optimization problems arise naturally, such
as algorithmic economics, data mining, finance, operations
research, and industrial engineering.
This paper is organized as follows. We first provide a

survey of related work in Section II. We then give a formal

1This is a simplification of our key result in Section V which gives a tighter
expression for the bound on regret that applies uniformly over time, not just
asymptotically.

description of the multi-armed bandits with linear rewards
problem we solve in Section III. In Section IV, we present our
LLR policy and show that it requires only polynomial storage
and polynomial computation per time period. We present
the novel analysis of the regret of this policy in Section V
and point out how this analysis generalizes known results on
MABs. In Section VI, we discuss examples and applications
of maximum weight matching, shortest path, and minimum
spanning tree computations to show that our policy is widely
useful for various interesting applications in networks with
the tractable combinatorial optimization formulation with
linear objective functions. Section VII shows the numerical
simulation results. We show an extension of our policy for
choosing largest actions in Section VIII. We conclude with
a summary of our contribution and point out avenues for future
work in Section IX. We also present an Appendix where we
show results on a suitably relaxed notion of regret that is useful
for computationally hard problems where an approximation
algorithm with a known guarantee is available.

II. RELATED WORK

Lai and Robbins [10] wrote one of the earliest papers on
the classic non-Bayesian infinite horizon multi-armed bandit
problem. Assuming independent arms, each generating re-
wards that are i.i.d. over time from a given family of distribu-
tions with an unknown real-valued parameter, they presented a
general policy that provides expected regret that is ,
i.e., linear in the number of arms and asymptotically logarithmic
in . They also show that this policy is order-optimal in that no
policy can do better than . Anantharam et al. [5] ex-
tend this work to the case when multiple plays are allowed.
Agrawal et al. [11] further extend this to the case when there are
multiple plays and also switching costs are taken into account.
Our study is influenced by the works by Agrawal [6] and

Auer et al. [7]. The work by Agrawal [6] first presented
easy-to-compute upper confidence bound (UCB) policies based
on the sample-mean that also yield asymptotically logarithmic
regret. Auer et al. [7] build on [6] and present variants of
Agrawal’s policy, including the so-called UCB1 policy, and
prove bounds on the regret that are logarithmic uniformly over
time (i.e., for any finite , not only asymptotically), so long as
the arm rewards have a finite support. There are similarities
in the proof techniques used in these works [6], [7], which
both use known results on large-deviation upper bounds. In our
paper, we also make use of this approach, leveraging the same
Chernoff–Hoeffding bound utilized in [7]. However, these
works do not exploit potential dependencies between the arms.2

As we show in this paper, a direct application of the UCB1
policy therefore performs poorly for our problem formulation.
Unlike Lai and Robbins [10], Agrawal [6], and Auer et al. [7],

we consider in this paper a more general combinatorial version
of the problem that allows for the selection of a set of multiple
variables simultaneously so long as they satisfy a given

2Both the papers by Agrawal [6] and Auer et al. [7] indicate in the problem
formulation that the rewards are independent across arms. However, since their
proof technique bounds separately the expected time spent on each nonoptimal
arm, in fact the bounds of the expected regret that they get through linearity of
expectation applies even when the arm rewards are not independent. Neverthe-
less, as we indicate, the policies do not exploit any dependencies that may exist
between the arm rewards.
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arbitrary constraint. The constraint can be specified explicitly
in terms of sets of variables that are allowed to be picked
together. There is no restriction on how these sets are con-
structed. They may correspond, for example, to some structural
property such as all possible paths or matchings on a graph.
While we credit the paper by Anantharam et al. [5] for being
the first to consider multiple simultaneous plays, we note that
our formulation is much more general than that work. Specif-
ically, Anantharam et al. [5] consider only a particular kind of
constraint: It allows selection of all combinations of a fixed
number of arms (i.e., in [5], exactly arms must be played
at each time). For this reason, the algorithm presented in [5]
cannot be directly used for the more general combinatorial
problem in our formulation. For the same reason, the algorithm
presented in [11] also cannot be used directly for our problem.
In our formulation, we assume that the rewards from each in-

dividual variable in the selected combination are observed, and
the total reward is a linearly weighted combination of these vari-
ables. Because we consider a fundamentally different and more
general problem formulation, our proof strategy, while sharing
structural similarities with [6] and [7], has a nontrivial innova-
tive component as well. In particular, in our setting, it turns out
to be difficult to directly bound the number of actual plays of
each weighted combination of variables, and therefore we create
a carefully defined virtual counter for each individual variable
and bound that instead.
There are also some recent works to propose decentralized

policies for the multi-armed bandit problemwith multiple plays.
Liu and Zhao [4], Anandkumar et al. [3], and a work by two of
the authors of this paper [12] present policies for the problem
of distributed players operating arms. These papers ad-
dress decentralized versions of the same fixed -play problem
considered in [5] and are therefore also not applicable to the
combinatorial generalization of this paper. The problem of for-
mulating and solving the combinatorial setting that we present
here in a decentralized fashion is currently open.
While our focus and those of the above works are primarily

on i.i.d. rewards, there have also been some prior and re-
cent works looking at non-Bayesian regret formulations for
multi-armed bandits with Markovian rewards [13]–[17]. We
have recently obtained some preliminary results on weaker
notions of regret (with respect to suboptimal single-action
policies) for rested Markovian rewards for the combinatorial
problem of maximum-weight matching in bipartite graphs [18].
However, the problem of generalizing our work to obtain
stronger regret results for combinatorial multi-armed bandits
with rested and restless Markovian rewards remains open.
While these above key papers and many others have focused

on independent arms, there have been some works treating de-
pendencies between arms. The paper by Pandey et al. [1] di-
vides arms into clusters of dependent arms (in our case, there
would be only one such cluster consisting of all the arms). Their
model assumes that each arm provides only binary rewards, and
in any case, they do not present any theoretical analysis on the
expected regret. Ortner [19] proposes to use an additional arm
color to utilize the given similarity information of different arms
to improve the upper bound of the regret. They assume that the
difference of the mean rewards of any two arms with the same
color is less than a predefined parameter , which is known to

the user. This is different from the linear reward model in our
paper.
Mersereau et al. [20] consider a bandit problem where the ex-

pected reward is defined as a linear function of a random vari-
able, and the prior distribution is known. They show the upper
bound of the regret is and the lower bound of the regret
is . Rusmevichientong and Tsitsiklis [21] extend [20] to
the setting where the reward from each arm is modeled as the
sum of a linear combination of a set of unknown static random
numbers and a zero-mean random variable that is i.i.d. over time
and independent across arms. The upper bound of the regret is
shown to be on the unit sphere and
for a compact set, and the lower bound of regret is for
both cases. The linear models in these works are different from
our paper, in which the reward is expressed as a linear combina-
tion as a set of random processes. A key difference, however, is
that in [20] and [21], it is assumed that only the total reward is
observed at each time, not the individual rewards. In our paper,
we assume that all the selected individual random variables are
observed at each time (from which the total reward can be in-
ferred). Because of the more limited coarse-grained feedback,
the problems tackled in [20] and [21] are indeed much more
challenging, perhaps explaining why they result in a higher re-
gret bound order.
Both [22] and [23] consider linear reward models that are

more general than ours, but also under the assumption that only
the total reward is observed at each time. Auer [22] presents
a randomized policy that requires storage and computation to
grow linearly in the number of arms. This algorithm is shown to
achieve a regret upper bound of . Dani
et al. [23] develop another randomized policy for the case of a
compact set of arms and show the regret is upper-bounded by

for sufficiently large with high probability,
and lower-bounded by . They also show that when
the difference in costs (denoted as ) between the optimal and
next-to-optimal decision among the extremal points is greater
than zero, the regret is upper-bounded by for
sufficiently large with high probability.
Another paper that is related to our work is by Awerbuch

and Kleinberg [24]. They consider the problem of shortest path
routing in a nonstochastic, adversarial setting, in which only the
total cost of the selected path is revealed at each time. For this
problem, assuming the edge costs on the graph are chosen by an
adaptive adversary that can view the past actions of the policy,
they present a policy with regret scaling as
over time-steps. However, although as we discuss our formu-
lation can also be applied to online shortest path routing, our
work is different from [24] in that we consider a stochastic, non-
adversarial setting and allow for observations of the individual
edge costs of the selected path at each time.
To summarize, ours is the first paper on stochastic combinato-

rial multi-armed bandits to consider linearly weighted rewards
along with observation of the selected random variables, al-
lowing for arbitrary constraints on the set of weights.We present
a deterministic policy with a finite-time bound of regret that
grows as , i.e., polynomially in the number of un-
known random variables and strictly logarithmically in time.
Our work in this paper is an extension of our recent work

that introduced combinatorial multi-armed bandits [25]. The
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formulation in [25] has the restriction that the reward is gener-
ated from a matching in a bipartite graph of users and channels.
Our work in this paper generalizes this to a broader formulation
with linear rewards and arbitrary constraints.

III. PROBLEM FORMULATION

We consider a discrete time system with unknown random
processes , where time is indexed by . We
assume that evolves as an i.i.d. random process over time,
with the only restriction that its distribution have a finite support.
Without loss of generality, we normalize . We do
not require that be independent across . This random
process is assumed to have a mean that is unknown
to the users. We denote the set of all these means as .
At each decision period (also referred to interchangeably

as time-slot), an -dimensional action vector is selected
under a policy from a finite set . We assume
for all . When a particular is selected, only
for those with , the value of is observed. We
denote , the index set of
all for an action . The reward is defined as

(1)

When a particular action is selected, the random
variables corresponding to nonzero components of are
revealed,3 i.e., the value of is observed for all such that

.
We evaluate policies with respect to regret, which is defined

as the difference between the expected reward that could be ob-
tained by a genie that can pick an optimal action at each time,
and that obtained by the given policy. Note that minimizing the
regret is equivalent to maximizing the rewards. Regret can be
expressed as

(2)

where , the expected reward of an optimal

action. For the rest of the paper, we use as the index indicating
that a parameter is for an optimal action. If there is more than
one optimal action exist, refers to any one of them.
Intuitively, we would like the regret to be as small

as possible. If it is sublinear with respect to time , the time-
averaged regret will tend to zero and the maximum possible
time-averaged reward can be achieved. Note that the number
of actions can be exponential in the number of unknown
random variables .

IV. POLICY DESIGN

A. Naive Approach

A unique feature of our problem formulation is that the action
selected at each time can be chosen such that the corresponding
collection of individual variables satisfies an arbitrary structural
constraint. For this reason, as we indicated in our related works

3As noted in the related work, this is a key assumption in our work that differ-
entiates it from other prior work on linear dependent-arm bandits [14], [15]. This
is a very reasonable assumption in many cases, for instance, in the combinato-
rial network optimization applications we discuss in Section VI, it corresponds
to revealing weights on the set of edges selected at each time.

discussion, prior work on MABs with fixed number of multiple
plays, such as [5], or on linear reward models, such as [23],
cannot be applied to this problem. One straightforward, rela-
tively naive approach to solving the combinatorial multi-armed
bandits problem that we defined is to treat each arm as an action,
which allows us to use the UCB1 policy given by Auer et al. [7].
Using UCB1, each action is mapped into an arm, and the ac-
tion that maximizes will be selected at each
time-slot, where is the mean observed reward on action ,
and is the number of times that action has been played.
This approach essentially ignores the dependencies across the
different actions, storing observed information about each ac-
tion independently, and making decisions based on this infor-
mation alone.
Auer et al. [7] showed the following policy performance for

regret upper bound as in Theorem 1.
Theorem 1: The expected regret under UCB1 policy is at

most

(3)

where , .

Proof: See [7, Theorem 1].
Note that UCB1 requires storage that is linear in the number

of actions and yields regret growing linearly with the number of
actions. In a case where the number of actions grow exponen-
tially with the number of unknown variables, both of these are
highly unsatisfactory.
Intuitively, UCB1 algorithm performs poorly on this problem

because it ignores the underlying dependencies. This motivates
us to propose a sophisticated policy that more efficiently stores
observations from correlated actions and exploits the correla-
tions to make better decisions.

B. New Policy

Our proposed policy, which we refer to as Learning with
Linear Rewards (LLR), is shown in Algorithm 1.

Algorithm 1: Learning with Linear Rewards (LLR)

1: // INITIALIZATION
2: If is known, let ; else, ;

3: for to do
4: ;
5: Play any action such that ;
6: Update , accordingly;
7: end for
8: // MAIN LOOP
9: while 1 do
10: ;
11: Play an action which solves the maximization

problem

(4)

12: Update , accordingly;
13: end while
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TABLE I
NOTATION

Table I summarizes some notation we use in the description
and analysis of our algorithm.
The key idea behind this algorithm is to store and use obser-

vations for each random variable, rather than for each action as
a whole. Since the same random variable can be observed while
operating different actions, this allows exploitation of informa-
tion gained from the operation of one action to make decisions
about a dependent action.
We use two vectors to store the information after we

play an action at each time-slot. One is , in which is
the average (sample mean) of all the observed values of up
to the current time-slot (obtained through potentially different
sets of actions over time). The other one is , in which
is the number of times that has been observed up to the

current time-slot.
At each time-slot , after an action is played, we get

the observation of for all . Then, and
(both initialized to 0 at time 0) are updated as follows:

if

else
(5)

if
else.

(6)

Note that while we indicate the time index in the above up-
dates for notational clarity, it is not necessary to store the ma-
trices from previous time steps while running the algorithm.
LLR policy requires storage linear in . In Section V, we

will present the analysis of the upper bound of regret and show
that it is polynomial in and logarithmic in time. Note that
the maximization problem (4) needs to be solved as the part of
LLR policy. It is a deterministic linear optimal problem with a
feasible set , and the computation time for an arbitrary may
not be polynomial in . As we show in Section VI, there exist
many practically useful examples with polynomial computation
time.

V. ANALYSIS OF REGRET

Traditionally, the regret of a policy for a multi-armed bandit
problem is upper-bounded by analyzing the expected number
of times that each nonoptimal action is played and summing
this expectation over all nonoptimal actions. While such an ap-
proach will work to analyze the LLR policy as well, it turns out
that the upper bound for regret consequently obtained is quite
loose, being linear in the number of actions, which may grow
faster than polynomials. Instead, we give here a tighter analysis
of the LLR policy that provides an upper bound that is instead
polynomial in and logarithmic in time. Like the regret anal-
ysis in [7], this upper bound is valid for finite .
Theorem 2: The expected regret under the LLR policy is at

most

(7)

To prove Theorem 2, we use the inequalities as stated in the
Chernoff–Hoeffding bound [26].
Lemma 1 (Chernoff–Hoeffding Bound [26]): are

random variables with range [0,1], and
, . Denote . Then, for all

(8)

Proof of Theorem 2: Denote as .
We introduce as a counter after the initialization period.
It is updated in the following way.
At each time-slot after the initialization period, one of the two

cases must happen: 1) an optimal action is played; 2) a nonop-
timal action is played. In the first case, will not be
updated. When an nonoptimal action is picked at time ,
there must be at least one such that .

If there is only one such action, is increased by 1. If there
are multiple such actions, we arbitrarily pick one, say , and in-
crement by 1.
Each time when a nonoptimal action is picked, exactly one

element in is incremented by 1. This implies that
the total number that we have played the nonoptimal actions
is equal to the summation of all counters in , i.e.,

, and hence

(9)

Therefore, we have

(10)

Also note, for , the following inequality holds:

(11)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Denote by the indicator function that is equal to 1 if
is added by one at time . Let be an arbitrary positive

integer. Then

(12)

where is the indicator function defined to be 1 when
the predicate is true, and 0 when it is false. When

, a nonoptimal action has been picked for
which . We denote this action as

since at each time that , we could get different
actions. Then

(13)

Note that implies

(14)

(15)

where represents the th element in and
represents the th element in .

means that at least one of the following must be true:

(16)

(17)

(18)

Now we find the upper bound for

.

We have

At least one of the following must hold

...

(19)

(20)

, applying the Chernoff–Hoeffding bound
stated in Lemma 1, we could find the upper bound of each item
in the previous equation as
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Thus

(21)

Similarly, we can get the upper bound of the probability for
inequality (17)

(22)

Note that for

(23)

Equation (23) implies that condition (18) is false when

. If we let , then (18) is false

for all .
Therefore

(24)

Thus, under LLR policy, we have

(25)

Remark 1: Note that when the set of action vectors consists
of binary vectors with a single “1,” the problem formulation
reduces to a multi-armed bandit problem with independent
actions. In this special case, the LLR algorithm is equivalent to
UCB1 in [7]. Thus, our results generalize that prior work.
Remark 2: We have presented as a finite set in our problem

formation. We note that the LLR policy we have described and
its analysis actually also work with a more general formulation
when is an infinite set with the following additional con-
straints: the maximization problem in (4) always has at least
one solution; exists; is bounded. With the above con-
straints, Algorithm 1 will work the same, and the conclusion and
all the details of the proof of Theorem 2 can remain the same.
Remark 3: In fact, Theorem 2 also holds for certain kinds

of non-i.i.d. random variables that satisfy the
condition that
. This is because the Chernoff–Hoeffding bound used in the

regret analysis requires only this condition to hold.4

VI. APPLICATIONS

We now describe some applications and extensions of the
LLR policy for combinatorial network optimization in graphs
where the edge weights are unknown random variables.

A. Maximum Weighted Matching

Maximum weighted matching (MWM) problems are widely
used in the many optimization problems in wireless networks
such as the prior work in [27], [28]. Given any graph

, there is a weight associated with each edge, and the ob-
jective is to maximize the sum weights of a matching among all
the matchings in a given constraint set, i.e., the general formu-
lation for MWM problem is

s.t. is a matching (26)

where is the weight associated with each edge .

4This does not, however, include Markov chains for which we have recently
obtained some weaker regret results [35].
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Fig. 1. Illustrative scenario.

In many practical applications, the weights are unknown
random variables and we need to learn by selecting different
matchings over time. This kind of problem fits the general
framework of our proposed policy regarding the reward as
the sum weight and a matching as an action. Our proposed
LLR policy is a solution with linear storage, and the regret
polynomial in the number of edges, and logarithmic in time.
There are various algorithms to solve the different variations

in the maximum weighted matching problems, such as the
Hungarian algorithm for the maximum weighted bipartite
matching [29] and Edmonds’s matching algorithm [30] for a
general maximum matching. In these cases, the computation
time is also polynomial.
Here, we present a general problem of multiuser channel al-

locations in cognitive radio network. There are secondary
users and orthogonal channels. Each secondary user requires
a single channel for operation that does not conflict with the
channels assigned to the other users. Due to geographic disper-
sion, each secondary user can potentially see different primary
user occupancy behavior on each channel. Time is divided into
discrete decision rounds. The throughput obtainable from spec-
trum opportunities on each user-channel combination over a de-
cision period is denoted as and modeled as an arbitrarily
distributed random variable with bounded support but unknown
mean, i.i.d. over time. This random process is assumed to have
a mean that is unknown to the users. The objective is to
search for an allocation of channels for all users that maximizes
the expected sum throughput.
Assuming an interference model whereby at most one sec-

ondary user can derive benefit from any channel, if the number
of channels is greater than the number of users, an optimal
channel allocation employs a one-to-one matching of users to
channels, such that the expected sum-throughput is maximized.
Fig. 1 illustrates a simple scenario. There are two secondary

users (i.e., links) S1 and S2, that are each assumed to be in in-
terference range of each other. S1 is proximate to primary user
P1, who is operating on channel 1. S2 is proximate to primary
user P2, who is operating on channel 2. The matrix shows the
corresponding , i.e., the throughput each secondary user could
derive from being on the corresponding channel. In this simple
example, the optimal matching is for secondary user 1 to be allo-
cated channel 2 and user 2 to be allocated channel 1. Note, how-
ever, that, in our formulation, the users are not a priori aware of
the matrix of mean values, and therefore must follow a sequen-
tial learning policy.
Note that this problem can be formulated as a multi-armed

bandits one with linear regret, in which each action corre-
sponds to a matching of the users to channels, and the reward
corresponds to the sum-throughput. In this channel allocation
problem, there are unknown random variables, and the

number of actions is , which can grow exponentially
in the number of unknown random variables. Following the
convention, instead of denoting the variables as a vector, we
refer it as an matrix. Therefore, the reward as each
time-slot by choosing a permutation is expressed as

(27)

where , is a set with all permutations, which is defined
as

(28)
We use two matrices to store the information after

we play an action at each time-slot. One is , in which
is the average (sample mean) of all the observed values of

channel by user up to the current time-slot (obtained through
potentially different sets of actions over time). The other one is

, in which is the number of times that channel
has been observed by user up to the current time-slot.
Applying Algorithm 1, we get a linear storage policy for

which and are stored and updated at
each time-slot. The regret is polynomial in the number of users
and channels, and logarithmic in time. Also, the computation
time for the policy is also polynomial since (4) in Algorithm 1
now becomes the following deterministic maximum weighted
bipartite matching problem:

(29)

on the bipartite graph of users and channels with edge
weights . It could be solved with
polynomial computation time (e.g., using the Hungarian algo-
rithm [29]). Note that for this

problem, which is less than so that the bound of regret
is tighter. The regret is following
Theorem 2.

B. Shortest Path

Shortest path (SP) problem is another example where the un-
derlying deterministic optimization can be done with polyno-
mial computation time. If the given directed graph is denoted as

with the source node and the destination node ,
and the cost (e.g., the transmission delay) associated with edge

is denoted as , the objective is to find the path
from to with the minimum sum cost, i.e.,

(30)

s.t. (31)

otherwise
(32)

where (31) and (32) define a feasible set , such that is the
set of all possible pathes from to . When are random
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TABLE II
COMPARISON OF REGRET BOUNDS

variables with bounded support but unknown mean, i.i.d. over
time, an dynamic learning policy is needed for this multi-armed
bandit formulation.
Note that corresponding to the LLR policy with the objective

to maximize the rewards, a direct variation of it is to find
the minimum linear cost defined on finite constraint set ,
by changing the maximization problem in to a minimization
problem. For clarity, this straightforward modification of LLR
is shown in Algorithm 2, which we refer to as Learning with
Linear Costs (LLC).

Algorithm 2: Learning with Linear Cost (LLC)

1: // INITIALIZATION PART IS SAME AS IN ALGORITHM 1
2: // MAIN LOOP
3: while 1 do
4: ;
5: Play an action which solves the minimization
problem

(33)

6: Update , accordingly;
7: end while

LLC (Algorithm 2) is a policy for a general multi-armed
bandit problem with linear cost defined on any constraint set.
It is directly derived from the LLR policy (Algorithm 1), so
Theorem 2 also holds for LLC, where the regret is defined as

(34)

where represents the minimum cost, which is cost of the
optimal action.
Using the LLC policy, we map each path between and

as an action. The number of unknown variables is , while
the number of actions could grow exponentially in the worst
case. Since there exist polynomial computation time algo-
rithms such as Dijkstra’s algorithm [31] and Bellman–Ford
algorithm [32], [33] for the shortest path problem, we
could apply these algorithms to solve (33) with edge cost

. LLC is thus an efficient policy to
solve the multi-armed bandit formulation of the shortest path
problem with linear storage, polynomial computation time.
Note that . Regret is .

Another related problem is the Shortest Path Tree (SPT),
where problem formulation is similar, and the objective is to
find a subgraph of the given graph with the minimum total

cost between a selected root node and all other nodes. It is
expressed as [34], [35]

(35)

s.t. (36)

(37)

where ,
. Equations (37) and (36) define the constraint set . We

can also use the polynomial computation time algorithms such
as Dijkstra’s algorithm and Bellman–Ford algorithm to solve
(33) for the LLC policy.

C. Minimum Spanning Tree

Minimum Spanning Tree (MST) is another combinatorial op-
timization with polynomial computation time algorithms, such
as Prim’s algorithm [36] and Kruskal’s algorithm [37]. The ob-
jective for the MST problem can be simply presented as

(38)

where is the set of all spanning trees in the graph.
With the LLC policy, each spanning tree is treated as an ac-

tion, and . Regret bound also grows as .
To summarize, we show in Table II a side-by-side compar-

ison for the bipartite matching, shortest paths, and spanning tree
problems. For the matching problem, the graph is already re-
stricted to bipartite graphs. The problem of counting the number
of paths on a graph is known to be #-P complete, so there is no
known simple formula for a general setting. Similarly, we are
not aware of any formulas for counting the number of spanning
trees on a general graph. For this reason, for the latter two prob-
lems, we present comparative analytical bounds for the special
case of the complete graph, where a closed-form expression for
number of paths can be readily obtained, and Cayley’s formula
can be used for the number of spanning trees [38].

VII. NUMERICAL SIMULATION RESULTS

We present in this section the numerical simulation results
with the example of multiuser channel allocations in cognitive
radio network.
Fig. 2 shows the simulation results of using LLR policy com-

pared to the naive policy in Section IV-A. We assume that the
system consists of orthogonal channels in and
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Fig. 2. Simulation results of a system with seven orthogonal channels and four
users.

TABLE III
REGRET WHEN

secondary users. The throughput for the user-
channel combination is an i.i.d. Bernoulli process with mean

( is unknown to the players) shown as follows:

(39)
where the components in the box are in the optimal action. Note
that while , so the storage used for
the naive approach is 30 times more than the LLR policy. Fig. 2
shows the regret (normalized with respect to the logarithm of
time) over time for the naive policy and the LLR policy. We can
see that under both policies the regret grows logarithmically in
time. But the regret for the naive policy is a lot higher than that
of the LLR policy.
Fig. 3 is another example of the case when and .

The throughput is also assumed to be an i.i.d. Bernoulli process,
with the following mean:

(40)

For this example, , which is much higher
than (about 336 times higher), so the storage used by
the naive policy grows much faster than the LLR policy. Com-
paring with the regrets shown in Table III for both examples
when , we can see that the regret also grows much
faster for the naive policy.

Fig. 3. Simulation results of a system with nine orthogonal channels and five
users.

VIII. SIMULTANEOUS ACTIONS

The reward-maximizing LLR policy presented in
Algorithm 1 and the corresponding cost-minimizing LLC
policy presented in Algorithm 2 can also be extended to the
setting where actions are played at each time-slot. The goal
is to maximize the total rewards (or minimize the total costs)
obtained by these actions. For brevity, we only present the
policy for the reward-maximization problem; the extension
to cost-minimization is straightforward. The modified LLR-K
policy for picking the best actions is shown in Algorithm 3.

Algorithm 3: Learning With Linear Rewards While Selecting
Actions (LLR-K)

1: // INITIALIZATION PART IS SAME AS IN ALGORITHM 1
2: MAIN LOOP
3: while 1 do
4: ;
5: Play actions with largest values in (41)

(41)

6: Update , for all actions accordingly;
7: end while

Theorem 3 states the upper bound of the regret for the ex-
tended LLR-K policy.
Theorem 3: The expected regret under the LLR-K policy

with actions selection is at most

(42)

Proof: The proof is similar to the proof of Theorem 2, but
nowwe have a set of actions with largest expected rewards
as the optimal actions. We denote this set as

, where is the action with th largest expected
reward. As in the proof of Theorem 2, we define as a
counter when a nonoptimal action is played in the same way.
Equations (50), (11), (12), and (14) still hold.
Note that each time when , there exists some ac-

tion such that a nonoptimal action is picked for which is the
minimum in this action. We denote this action as . Note that
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means there exists , , such that the following
holds:

(43)

Since at each time actions are played, at time , a random
variable could be observed up to times. Then, (15) should
be modified as

(44)

Equations (16)–(23) are similar by substituting with .
Thus, we have

(45)

Hence, we get the upper bound for the regret as

(46)

IX. CONCLUSION

We have considered multi-armed bandit problems in which
at each time an arbitrarily constrained set of random variables
are selected, the selected variables are revealed, and a total
reward that is a linear function of the selected variables is
yielded. For such problems, existing single-play MAB policies
such as the well-known UCB1 [7] can be utilized, but have
poor performance in terms of storage, computation, and regret.
The LLR and LLR-K policies we have presented are smarter
in that they store and make decisions at each time based on
the stochastic observations of the underlying unknown-mean

random variables alone; they require only linear storage and
result in a regret that is bounded by a polynomial function of the
number of unknown-mean random variables. If the determin-
istic version of the corresponding combinatorial optimization
problem can be solved in polynomial time, our policy will
also require only polynomial computation per step. We have
shown a number of problems in the context of networks where
this formulation would be useful, including maximum weight
matching, shortest path, and spanning tree computations. For
the case where the deterministic version is NP-hard, one has
often at hand a polynomial-time approximation algorithm. In
the Appendix, we show that under a suitably relaxed definition
of regret, the LLR algorithm can also employ such an approxi-
mation to give provable performance.
While this paper has provided useful insights into real-world

linear combinatorial optimization with unknown-mean random
coefficients, there are many interesting open problems to be ex-
plored in the future. One open question is to derive a lower
bound on the regret achievable by any policy for this problem.
We conjecture on intuitive grounds that it is not possible to have
regret lower than , but this remains to be proved rig-
orously. It is unclear whether the lower bound can be any higher
than this, and hence, it is unclear whether it is possible to prove
an upper bound on regret for some policy that is better than the

upper bound shown in our work.
In the context of channel access in cognitive radio networks,

other researchers have recently developed distributed policies in
which different users each select an arm independently [3], [4].
A closely related problem in this setting would be to have dis-
tributed users selecting different elements of the action vector
independently. The design and analysis of such distributed poli-
cies is an open problem.
Finally, it would be of great interest to see if it is possible

to also tackle nonlinear reward functions, at least in structured
cases that have proved to be tractable in deterministic settings,
such as convex functions.

APPENDIX
LLR WITH APPROXIMATION ALGORITHM

One interesting question arises in the context of NP-hard
combinatorial optimization problems, where even the deter-
ministic version of the problem cannot be solved in polynomial
time with known algorithms. In such cases, if only an approx-
imation algorithm with some known approximation guarantee
is available, what can be said about the regret bound?
For such settings, let us consider that a factor- approxima-

tion algorithm (i.e., which for a maximization problem yields a
solutions that have reward more than ) is used to solve
the maximization step in (4) in our LLR Algorithm 1. Accord-
ingly, we define an -approximate action to be an action whose
expected reward is within a factor of that of the optimal ac-
tion, and all other actions as non- -approximate. Now, we de-
fine -approximation regret as follows:

total number of times non- approximate actions

are played by strategy in time slots (47)

-
(48)
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where is the total number of time that has been played
up to time . We define as the minimum distance between
an -approximate action and a non- -approximate action. We
assume .
We have the following theorem regarding LLR with a
-approximation algorithm.
Theorem 4: The -approximation regret under the LLR

policy with a -approximation algorithm is at most

(49)

Proof: We modify the proof of Theorem 2 to show
Theorem 4. We replace “optimal action” with “ -approximate
action,” and “non-optimal action” with “non- -approximate
action” everywhere shown in the proof of Theorem 2, and we
still define a virtual counter in a similar way. We
still use to refer to an optimal action. Thus, (50) becomes

- -
(50)

Nowwe note that for LLRwith a -approximation algorithm,
when , a non- -approximate action has been
picked for which . Define

is the optimal solution for (4) in Algorithm 1. Then, we have

(51)

(52)

Therefore

(53)

With a similar analysis, as in (13) to (15), we have

(54)

Now we note that

im-

plies that at least one of the following must be true:

(55)

(56)

(57)

Equations (55) and (56) are equivalent to (16) and (17), and we

note that for (57), when

(58)

Therefore, (45) still holds, and we have the upper bound for
-approximation regret as
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