Ming Hsieh Department of Electrical Engineering

High Performance IPv6 Forwarding on Software and Hardware Platforms

Thilan Ganegedara and Viktor Prasanna Department of Computer Engineering (Parallel Computing Group)

IPv6 and Backbone Networks

Internet addressing: IPv4 (32 bit) and IPv6 (128 bit) IPv6 representation in backbone routing tables

• Currently ~2%, but growing Challenges with IPv6

- Increased packet lookup complexity
- Increased routing table storage requirements Challenges with Backbone networks require,
- High-speed forwarding (100+ Gbps rates)
- Low-latency operation
- Scalability

Prefix distribution of current backbone routing tables. With more ISPs adopting IPv6, the IPv6 representation is expected to grow significantly in future

Approach

Partition the routing table into disjoint sets -2 phases

- Phase 1: Use initial *p* bits of prefixes and partition
- Phase 2: Aggregate initial partitions \rightarrow Near uni-size

Represent each aggregated partition as Range tree

- O(log N) search complexity for N keys
- Higher scalability

Results for a 350K entry backbone routing table $(p = 15, n_i = 336, n_a = 12)$

Architectures

Performance

Routing tables: Large (up to 8M) synthetic routing tables Platforms:

- AMD Opteron 6278, 32-core @ 2.4 GHz
- AMD Opteron 6220, 16-core @ 3.0 GHz
- Xilinx Virtex 7 X1140T– 80 Mbit on-chip RAM

Contact: Thilan Ganegedara – <u>ganegeda@usc.edu</u>, Viktor Prasanna – <u>prasanna@usc.edu</u> This work is supported by the United States National Science Foundation under grant No. CCF-1116781. Equipment grant from Xilinx Inc. is gratefully acknowledged.

Ming Hsieh Institute

Ming Hsieh Department of Electrical Engineering