

USCViterbi

School of Engineering

Ming Hsieh Department of Electrical Engineering

Airway-tissue boundary segmentation in the upper airway images recorded by real-time magnetic resonance imaging

Jangwon Kim, jangwon@usc.edu, Electrical Engineering Dept. Signal Analysis and Interpretation Laboratory (SAIL)

Introduction

Objective: automatic segmentation of airway and tissue in the upper airway images recorded by real-time magnetic resonance imaging (rtMRI) in order to assist image analysis for speech production study.

Challenges:

•Complex structure of the vocal tract

Airway-path estimation

•Grainy noise

Non-uniform sensitivity of the tissues in head and neck
Rapidly varying irregular vocal track shape

Our approach:

•A data-driven way of enhancement of MR images

- Multi-resolution-based pixel intensity correction
- Noise suppression by sigmoid-kernel function
 Accurate estimation of the path between airway-tissue boundaries by applying roughly defined constraints, followed by simple search of tissue boundaries.

MR image enhancement

Airway path line is found under the constraints of spatial smoothness and manually defined regions.
In the Viterbi algorithm on this problem:

- States Q = [q1, ..., qN]: N bins in each grid line
- Transition score from qi to qj: T(i,j) = 1/dist(qi,qj)
- Likelihood score of qi at grid k:
 L(i,k) = 1/(pixel intensity of qi)
 - L(i,k) = 0 where qi at grid k is outside the manually defined constraint regions.
- solution (state sequences with maximum cost):

 $Q^{\star} = \underset{[S^{k=1}, \dots, S^{k=K}]}{\arg \max} P_{S^{1}}^{1} \prod_{k=1}^{K} T(S^{k}, S^{k+1}) \times L(k, S^{k})$

where $S^{k=n}$ the optimal state index for n-th frame and $S^k \in \{1, ..., N\}$, P_i^1 be the prior score of qi at k=1.

Airway-tissue segmentation

- 1. Original image (O)
- 2. Intensity map (S): created by a morphological closing
- 3. Intensity correction by O x (1/S)
- Intensity warping by sigmoid-kernel function: highlighting tissues and suppressing grainy noise

Find the pixel whose intensity is over threshold for each grid by searching from the estimated airway path to the right-top or left-bottom sides
Euclidean distance between airway tissue boundaries in each grid line.

