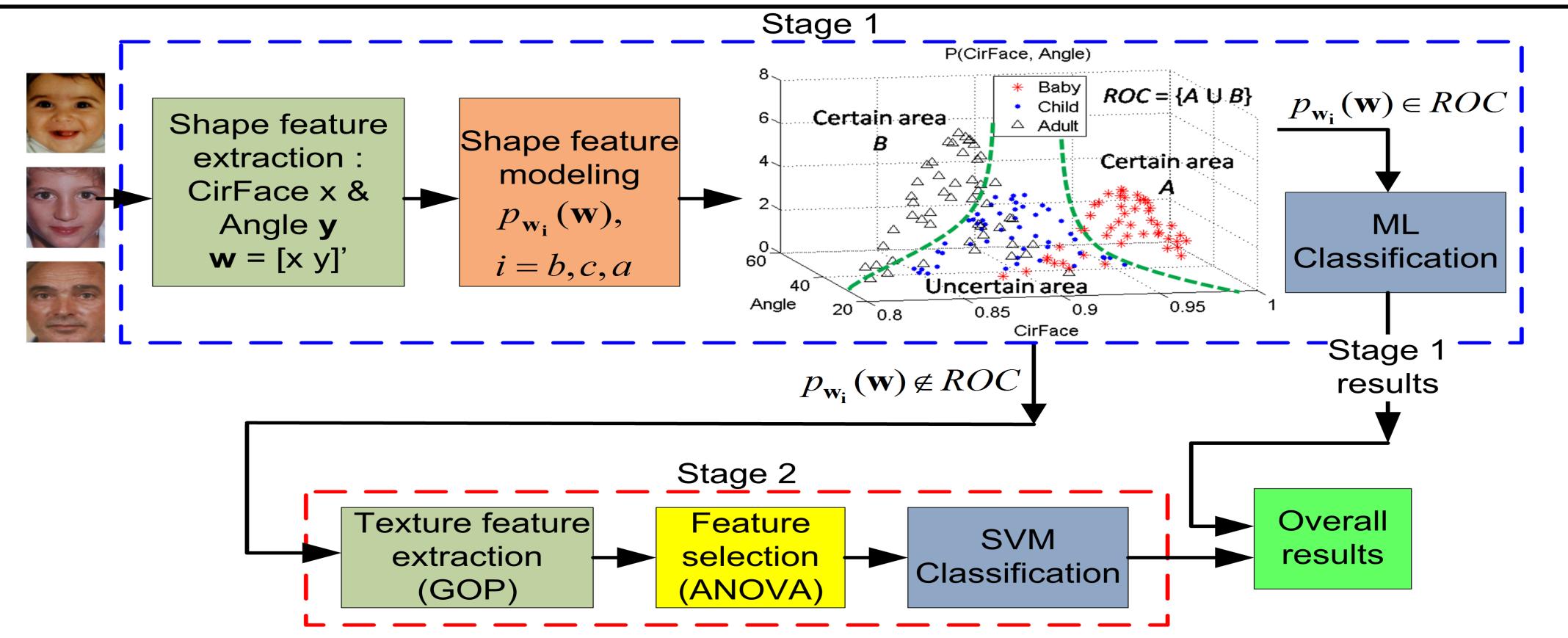


USC Viterbi School of Engineering

Ming Hsieh Department of Electrical Engineering

Cascaded Age Groups Classification Kuan-Hsien Liu, Shuicheng Yan and C.-C. Jay Kuo

Ming Hsieh Department of Electrical Engineering and Signal and Image Processing Institute


Introduction

We present a highly accurate two-stage method for age groups classification by cascading two types of human facial features.

In the first stage, two shape-based features, CirFace and Angle, are extracted from faces and used to determine whether a face is certain or uncertain for classification. The "certain" faces are classified using the maximum likelihood (ML) decision rule and "uncertain" faces are sent to the second stage.

In the second stage, a surface-based feature, known as the gradient orientation pyramid (GOP), is extracted from facial images and, then, the analysis of variance (ANOVA) feature selection technique is applied to these features to further select significant features for classification by an SVM classifier.

Experimental Results

Classas fasturas	Classification Rate (%)					
Shape feature	Baby	Child	Adult	Average		
CirFace (new)	84	54	82	73.3		
Angle (new)	68	58	86	70.7		
Ratio 1 [21]	56	50	58	54.7		
Ratio 2 [21]	62	44	88	64.7		

Database	Baby	Child	Adult	Senior	Average Rate				
FG-NET	82.8%	68.6%	69.7%		71.1%				
MORPH		93.7%	76.2%	72.1%	80.6%				
GOP+ANOVA+SVM									
GOP+ANO	VA+SVM				Average				
GOP+ANO Database	VA+SVM Baby	Child	Adult	Senior	Average Rate				
		Child 91.9%	Adult 90.1%	Senior 					

	Method	FG-NET	MORPH
	Wrinkle [19]	69.7%	68.1%
	HOG + PNN [18]	78.5%	80.3%
	LBP + KNN [15]	71.3%	72.6%
1	GOP+ANOVA+SVM (new)	91.4%	90.3%
_	CirFace & Angle + GOP+ANOVA+SVM (new)	95.1%	93.7%

Conclusion & Future Work

- ❖ We proposed a facial age groups classification system using a conjunction of shape- and surface-feature based classifiers. Two new shape features were developed and a new surface feature based method was designed. By setting a ROC to jointly classify the facial images with two stages, the resulting system gave a highly accurate classification result. Experimental results demonstrated that the proposed method outperforms the state-of-the-art methods.
- ❖ We will explore other shape features and fuse different shape features together. Also, we may consider the effects of the number of pyramid layers for GOP and use/combine other surface-based features. Besides, different classifiers can be tested and compared. More than three age groups classification problem will also be an interesting and challenging topic.

CODISMA