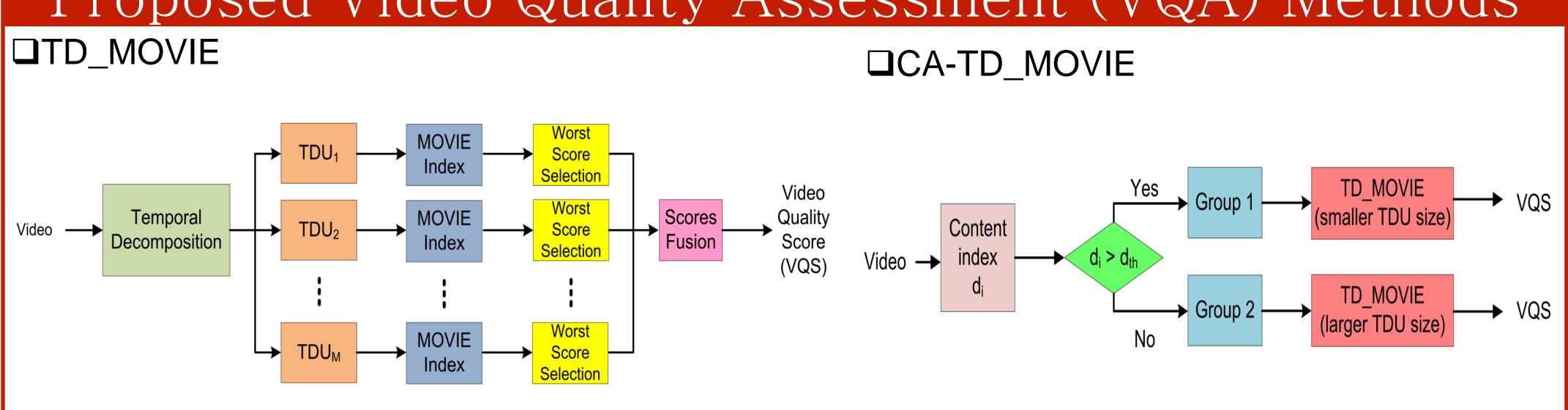
A FUSION APPROACH TO VIDEO QUALITY ASSESSMENT USC Viterbi BASED ON TEMPORAL DECOMPOSITION

Tsung-Jung Liu¹, Weisi Lin², and C.-C. Jay Kuo¹

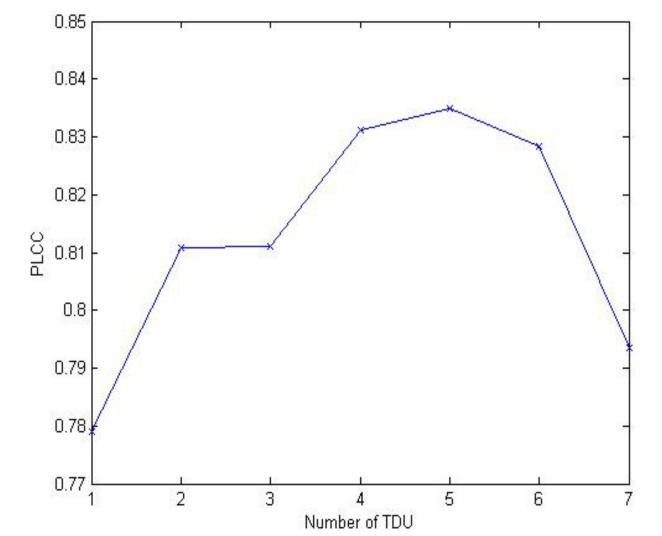

¹Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, USA ²School of Computer Engineering, Nanyan Technological University, Singapore

of Electrical Engineering

Abstract

- In this work, an input video clip is first decomposed into smaller units along the temporal domain, called the temporal decomposition units (TDUs).
- Next, for each TDU that consists of a small number of frames, we adopt a proper video quality metric (specifically, the MOVIE index in this work) to compute the quality scores of all frames.
- * Based on the sociological findings, choose the worst scores of TDUs for data fusion.
- Finally, a regression approach is used to fuse selected worst scores from all TDUs to get the ultimate quality score of the input video.
- Conduct extensive experiments on the LIVE video database, and show that the proposed approach indeed improves MOVIE and is also competitive with other state-of-the-art video quality metrics.

Proposed Video Quality Assessment (VQA) Methods


Experiments and Performances

☐Test Database

LIVE Video Quality Database >YUV 4:2:0 formats

➤ spatial resolution: 768x432 pixels

□ Performance Measure of TD_MOVIE vs. number of TDUs

□ Performance of TD_MOVIE

Type of			
Score	Min.	Mean	Max.
Measure			
PLCC	0.6990	0.8015	0.8350
SROCC	0.6581	0.7814	0.8233
RMSE	7.8504	6.5649	6.0397

□ Performance Comparison of VQA models

Measure VQA Model	PLCC	SROCC	RMSE
PSNR	0.5465	0.5205	9.1929
V-SSIM	0.6058	0.5924	8.7337
VQM	0.7695	0.7529	7.0111
MOVIE	0.8116	0.7890	6.4130
TD_MOVIE	0.8350	0.8233	6.0397
CA- TD_MOVIE	0.8494	0.8420	5.7932

Conclusions

□We proposed a methodology (TD_MOVIE) to enhance the performance of MOVIE by using

- Temporal decomposition
- Selecting the worst scores for fusion
- ☐ The results can be improved further via CA-TD_MOVIE by using
- Adaptive TDU size selection based on a content aware mechanism
- □Experimental results show that they both outperform MOVIE as well as other state-of-the-art video quality metrics by a significant margin