

USC Viterbi

School of Engineering

Ming Hsieh Department of Electrical Engineering

Continuous Models of Affect from Text using N-Grams

Nikolaos Malandrakis, Alexandros Potamianos, Shrikanth Narayanan malandra@usc.edu, potam@telecom.tuc.gr, shri@sipi.usc.edu

Introduction

- Creation of continuous affective ratings
 - Words/Terms
 - Sentences
- Compositionality assumption
 - Hierarchical decomposition
- Multi-word terms not handled

Word/Term model

• Ratings through semantic similarities to known words

$$\hat{v}(w_j) = a_0 + \sum_{i=1}^N a_i v(w_i) d_{ij},$$

• d_{ij} cosine similarity of binary weighted context vectors

- "in short"
- "look up"
- "kick the bucket"
- Our approach:
 - Language modeling inspired
 - Bigram terms
 - Back-off to unigrams

– 116m sentence web corpus

- Affective Norms for English Words (ANEW)
 - 1034 annotated words
 - Extrema \rightarrow semantic space
 - Used to train a_i

Sentence Rating

Evaluation

- SemEval'2007 corpus
 - 1000 news headlines
 - Continuous valence
 - 53% negative
 - Train set of 250 headlines
- Binary polarity classification
- 1grams only > 2grams only
- Significant improvement
- Semantic criterion performs best
- Optimal performance at 75% rejection

Conclusions

- Significant improvement over unigrams
- Adaptable compositional frameworks
- Future work:
 - Improved term model
 - Higher order terms
 - Alternate selection criteria

Acknowledgments

- Most of this work performed while N. Malandrakis was with the Dept. of ECE, TU Crete
- Partially supported by the IST Programme of the EU under contract number 296170 (PortDial project)
- Partially funded by the Viterbi Fellowship and NSF